Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NREL Licenses Technology to Increase Solar Cell Efficiency: Natcore to develop ‘black silicon’ solar cells based on award-winning innovation

Abstract:
The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) announced today that Natcore Technology Inc. has been granted a patent license agreement to develop a line of black silicon products.

NREL Licenses Technology to Increase Solar Cell Efficiency: Natcore to develop ‘black silicon’ solar cells based on award-winning innovation

Golden, CO | Posted on December 20th, 2011

Natcore and NREL also will enter a Cooperative Research and Development Agreement (CRADA) to develop commercial prototypes based on NREL's black silicon inventions and patents.

"This technology will play and important role in moving forward the availability of solar technologies," NREL Vice President for Commercialization & Technology Transfer William Farris said. "It is one more step to help bolster the Department of Energy's SunShot Initiative to make solar energy cost competitive with other forms of energy by the end of the decade."

The Black Silicon Nanocatalytic Wet-Chemical Etch emerged from work by NREL photovoltaic researchers that demonstrated that black silicon solar cells, which have been chemically etched to appear black, better absorb the sun's energy. The inexpensive, one-step method reduces light reflection from silicon wafers to less than 2 percent, and promises to reduce manufacturing production cost and capital expense.

Any photons reflected from the surface of a solar cell are wasted. To reduce reflected sunlight and increase cell efficiency, NREL scientists invented the antireflection process that turns silicon wafers black so they absorb 98 percent of solar radiation. Today's solar cells absorb about 95 percent of the sun's radiation.

The much-lower-cost recipe is still a few tenths of a percent less efficient than the best of the conventional cells. However, the black silicon prevents reflection of low-angle morning and afternoon sunlight far better, which means a jump in photovoltaic efficiency of at least 1 percentage point can be achieved.

NREL estimates that its method can reduce processing costs by 4 to 8 percent, resulting in overall savings in solar cell manufacturing of 1 to 3 percent, making black silicon particularly appealing.

The Black Silicon Nanocatalytic Wet-Chemical Etch was honored with a 2010 R&D 100 Award. The R&D 100 award is considered in the research and development community to be "the Oscars of Innovation."

####

About National Renewable Energy Laboratory (NREL)
NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for DOE by The Alliance for Sustainable Energy, LLC.

For more information, please click here

Contacts:
Media may contact:
Heather Lammers
303-275-4084

Copyright © National Renewable Energy Laboratory (NREL)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Laboratories

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing February 4th, 2016

Putting silicon 'sawdust' in a graphene cage boosts battery performance: Approach could remove major obstacles to increasing the capacity of lithium-ion batteries January 30th, 2016

Breakthrough enables ultra-fast transport of electrical charges in polymers January 30th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing February 4th, 2016

Announcements

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Patents/IP/Tech Transfer/Licensing

Joint Efforts by Iranian, Malaysian Scientists Produce Antibacterial Coatings for Isolated Areas February 4th, 2016

Silicon-based metamaterials could bring photonic circuits February 1st, 2016

Therapeutic Solutions International Licenses Dexosome Clinical Stage Cancer Immunotherapy Product From Gustave Roussy European Cancer Centre: FDA Cleared Immuno-Oncology Technology to Resume Clinical Development for Solid Tumor Patients January 27th, 2016

Light-activated nanoparticles prove effective against antibiotic-resistant 'superbugs' January 19th, 2016

Energy

February 4th, 2016

Putting silicon 'sawdust' in a graphene cage boosts battery performance: Approach could remove major obstacles to increasing the capacity of lithium-ion batteries January 30th, 2016

Simplifying solar cells with a new mix of materials: Berkeley Lab-led research team creates a high-efficiency device in 7 steps January 29th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

Alliances/Trade associations/Partnerships/Distributorships

Vesper Collaborates with GLOBALFOUNDRIES to Deliver First Piezoelectric MEMS Microphones: Acoustic sensing company works with top foundry to support mass-market consumer products January 21st, 2016

Imec and Cloudtag Collaborate on High Quality Frictionless Wearables for Lifestyle Coaching: Next-generation health and fitness tracker Cloudtag TrackTM launched at CES 2016 January 7th, 2016

Technical partnership at the top – Oxford Instruments and Zurich Instruments announce a technical collaboration for low temperature physics January 7th, 2016

Production of Graphene Oxide Nanosheets to Economize Fuel Cells January 1st, 2016

Solar/Photovoltaic

Simplifying solar cells with a new mix of materials: Berkeley Lab-led research team creates a high-efficiency device in 7 steps January 29th, 2016

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

Nanostructural Changes in Solar Cells to Increase Their Efficiency January 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic