Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers discover a way to significantly reduce the production costs of fuel cells

Abstract:
Researchers at Aalto University in Finland have developed a new and significantly cheaper method of manufacturing fuel cells. A noble metal nanoparticle catalyst for fuel cells is prepared using atomic layer deposition (ALD).

Researchers discover a way to significantly reduce the production costs of fuel cells

Finland | Posted on December 20th, 2011

This ALD method for manufacturing fuel cells requires 60 per cent less of the costly catalyst than current methods.

- This is a significant discovery, because researchers have not been able to achieve savings of this magnitude before with materials that are commercially available, says Docent Tanja Kallio of Aalto University.

Fuel cells could replace polluting combustion engines that are presently in use. However, in a fuel cell, chemical processes must be sped up by using a catalyst. The high price of catalysts is one of the biggest hurdles to the wide adoption of fuel cells at the moment.

The most commonly used fuel cells cover anode with expensive noble metal powder which reacts well with the fuel. By using the Aalto University researchers' ALD method, this cover can be much thinner and more even than before which lowers costs and increases quality.

With this study, researchers are developing better alcohol fuel cells using methanol or ethanol as their fuel. It is easier to handle and store alcohols than commonly used hydrogen. In alcohol fuel cells, it is also possible to use palladium as a catalyst.

The most common catalyst for hydrogen fuel cells is platinum, which is twice as expensive as palladium. This means that alcohol fuel cells and palladium will bring a more economical product to the market.

Fuel cells can create electricity that produces very little or even no pollution. They are highly efficient, making more energy and requiring less fuel than other devices of equal size. They are also quiet and require low maintenance, because there are no moving parts.

In the future, when production costs can be lowered, fuel cells are expected to power electric vehicles and replace batteries, among other things. Despite their high price, fuel cells have already been used for a long time to produce energy in isolated environments, such as space crafts. These results are based on preliminary testing with fuel cell anodes using a palladium catalyst. Commercial production could start in 5-10 years.

This study was published in the Journal of Physical Chemistry C. The research has been funded by Aalto University's MIDE research program and the Academy of Finland.

Journal reference: Atomic Layer Deposition Preparation of Pd Nanoparticles on a Porous Carbon Support for Alcohol Oxidation. The Journal of Physical Chemistry C, 2011, 115, 23067-23073. dx.doi.org/10.1021/jp2083659

####

For more information, please click here

Contacts:
Docent Tanja Kallio
School of Chemical Technology, Aalto University

puh. 09 470 225 83

Copyright © Aalto University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Chemistry

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Sandia develops math techniques to improve computational efficiency in quantum chemistry May 5th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Discoveries

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Announcements

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Energy

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

CCNY physicists demonstrate photonic hypercrystals for control of light-matter interaction May 5th, 2017

Fuel Cells

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project