Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NPL models the extracellular matrix: UK scientists create a functional model of the extracellular matrix which could lead to advances in regenerative medicine

Abstract:
Scientists at the National Physical Laboratory (NPL) have created a functional model of the native extracellular matrix that provides structural support to cells to aid growth and proliferation. The model could lead to advances in regenerative medicine.

NPL models the extracellular matrix: UK scientists create a functional model of the extracellular matrix which could lead to advances in regenerative medicine

Teddington, UK | Posted on December 20th, 2011

The extracellular matrix (ECM) provides the physical and chemical conditions that enable the development of all biological tissues. It is a complex nano-to-microscale structure made up of protein fibres and serves as a dynamic substrate that supports tissue repair and regeneration.

Man-made structures designed to mimic and replace the native matrix in damaged or diseased tissues are highly sought after to advance our understanding of tissue organisation and to make regenerative medicine a reality.

Self-assembling peptide fibres that have similar properties to those of the native matrices are of particular interest. However, these near-crystalline nanostructures fail to arrange themselves into interconnected meshes at the microscopic scale, which is critical for bringing cells together and supporting tissue development.

To solve this problem, a research team at NPL designed a small protein consisting of two complementary domains (structural units) that promote the formation of highly branched networks of fibres that span microscopic dimensions. The team showed that the created matrix is very efficient in supporting cell attachment, growth and proliferation.

Max Ryadnov, the lead researcher at NPL, said: "The extracellular matrix is a cellular "scaffolding", which provides necessary signalling environment for cell growth and development into tissues and can help to heal wounds and other damaged tissues. Therefore, extracellular mimetics such as one developed by NPL could be useful for the progress of regenerative medicine."

This research is part of the NPL-led international research project, 'Multiscale measurements in biophysical systems', which is jointly funded by NPL and the Scottish Universities Physics Alliance.

####

About National Physical Laboratory
The National Physical Laboratory (NPL) is one of the UK's leading science facilities and research centres. It is a world-leading centre of excellence in developing and applying the most accurate standards, science and technology available.

NPL occupies a unique position as the UK's National Measurement Institute and sits at the intersection between scientific discovery and real world application. Its expertise and original research have underpinned quality of life, innovation and competitiveness for UK citizens and business for more than a century.

For more information, please click here

Contacts:
David Lewis

084-568-01865

Copyright © National Physical Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The full research was published recently in Angewandte Chemie – the premier and most authoritative venue for critical advances in chemical research. It is available here:

Related News Press

Laboratories

Could black phosphorus be the next silicon? New material could make it possible to pack more transistors on a chip, research suggests July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

News and information

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Could black phosphorus be the next silicon? New material could make it possible to pack more transistors on a chip, research suggests July 7th, 2015

A cool way to form 2-D conducting polymers using ice: POSTECH scientists develop breakthrough technique to easily optimize electrical properties of Polyaniline nanosheets to an unprecedented level in an environmental-friendly and inexpensive way July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Nanomedicine

Sensor technology can improve accuracy of prostate cancer diagnosis, research shows July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Miniature Technology, Large-Scale Impact: Winner of the 2015 Lindros Award for translational medicine, Kjeld Janssen is pushing the boundaries of the emerging lab-on-a-chip technology - See more at: http://www.news.ucsb.edu/2015/015744/miniature-technology-large-scale-impact#stha July 7th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

Discoveries

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Announcements

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Research partnerships

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

Fundamental observation of spin-controlled electrical conduction in metals: Ultrafast terahertz spectroscopy yields direct insight into the building block of modern magnetic memories July 6th, 2015

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Tel Aviv/Tsinghua University project uses crowd computing to improve water filtration: The research, a product of the new TAU-Tsinghua XIN Center, was conducted by 150,000 volunteers at IBM's World Community Grid July 6th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project