Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UCF nanotechnology may speed up drug testing

This is Dr. Swadeshmukul Santra in his lab at UCF.

Credit: UCF
This is Dr. Swadeshmukul Santra in his lab at UCF.

Credit: UCF

Abstract:
Testing the effectiveness of new pharmaceuticals may get faster thanks to a new technique incorporating quantum dots developed at the University of Central Florida.

UCF nanotechnology may speed up drug testing

Orlando, FL | Posted on December 19th, 2011

Some drug testing can take a decade or more, but UCF associate professor Swadeshmukul Santra and his team have created an electronic quantum dots (Qdots) probe that "lights up" when a drug it is delivering attaches to cancer cells. The research appears online in this month's Biomaterials. www.sciencedirect.com/science/article/pii/S0142961211012841#FCANote

A researcher can use a microscope to see where and how much of the drug has been delivered because the probe emits a reddish color under special lighting or via MRI because of its optical and magnetic components.

As the drug testing continues, images can be taken over and over without any loss of optical or MRI signal. Researchers can then measure the size of the tumor and number of cancer cells that "light up" compared with the original untreated tumor.

This provides a way to determine whether the drug is doing what it is supposed to be doing in the targeted areas. The technique is much easier than the current process of removing treated cancer tumors and weighing them at regular intervals to determine the drug's efficiency in an animal.

"Many people in my area have been studying this approach for years," Santra said. "But we have now moved it into a live cell, not just in test tubes."

Sudiptal Seal, the director of UCF's NanoScience Technology Center and nanoscience scientist believes Santra's research is significant.

"This is indeed a major breakthrough in Qdot research," Seal said. "This new diagnostic tool will certainly impact the field of nanomedicine."

Santra and his team used semiconductor Qdots to create the probe. Because of their small size and crystal-like structure, Qdots display unique optical and electronic properties when they get excited. These unique properties make them ideal for sustained and reliable imaging with special lights.

For this research funded by the National Science Foundation and National Institutes of Health, the UCF-led team used a superparamagnetic iron oxide nanoparticle core decorated with satellite CdS:Mn/ZnS Qdots which carried the cancer-fighting agent STAT3 inhibitor. The Qdot optical signal turned on when the probe bonded with the cancer cells.

"The potential applications for drug testing specifically for cancer research are immediate," Santra said.

Collaborators on the research included: Andre J. Gesquiere also of UCF, James Turkson of the University of Hawaii, Glenn A. Water of the University of Florida and Patrick T. Gunning from the University of Toronto.

Santra has his own team of students and scientists at the UCF NanoScience Technology Center, which has been studying nanotechnology, quantum dots and their applications for years. The team focuses on the engineering of nanomaterials for bioimaging and sensing, drug delivery and anti-microbial applications.

Santra joined UCF in 2005 after working as a research assistant professor at the University of Florida. He has a Ph.D. from the Indian Institute of Technology Kanpur and served as a postdoctoral fellow at the University of Florida. He has written dozens of articles and book chapters on nanoscience and nanotechnology. Santra also holds eight US patents in nano-bio and biomedical fields.

####

About University of Central Florida
UCF Stands For Opportunity --The University of Central Florida is a metropolitan research university that ranks as the second largest in the nation with more than 58,000 students. UCF's first classes were offered in 1968. The university offers impressive academic and research environments that power the region's economic development. UCF's culture of opportunity is driven by our diversity, Orlando environment, history of entrepreneurship and our youth, relevance and energy.

For more information, please click here

Contacts:
Zenaida Gonzalez Kotala
UCF
News & Information
407-823-6120

Copyright © University of Central Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Nanomedicine

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Nonviral CRISPR Delivery a Success October 2nd, 2017

Discoveries

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Announcements

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Quantum Dots/Rods

Quantum communications bend to our needs: By changing the wavelengths of entangled photons to those used in telecommunications, researchers see quantum technology take a major leap forward September 28th, 2017

Band Gaps, Made to Order: Engineers create atomically thin superlattice materials with precision September 26th, 2017

New approach on research and design for CQD catalysts in World Scientific NANO August 2nd, 2017

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project