Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Novel method for fabricating corrugated 3D carbon nanotube microstructures

Figure CNT microstructures: Fabrication of cylindrical CNT microbellows by iteration of growth and capillary forming: (A) schematic illustration of the iterative process; (B) SEM images of a cylindrical CNT microstructure before and after capillary forming (1 cycle), with close-up images emphasizing the densification of aligned CNTs; (C–E) SEM images of microstructures after consecutive growth, forming, and growth cycles, reaching 2.5 cycles in image E.
Figure CNT microstructures: Fabrication of cylindrical CNT microbellows by iteration of growth and capillary forming: (A) schematic illustration of the iterative process; (B) SEM images of a cylindrical CNT microstructure before and after capillary forming (1 cycle), with close-up images emphasizing the densification of aligned CNTs; (C–E) SEM images of microstructures after consecutive growth, forming, and growth cycles, reaching 2.5 cycles in image E.

Abstract:
Imec, in collaboration with the University of Michigan, US, presents a new 3D structuring method for making vertically-aligned corrugated nanostructures. The method is based on an iterative sequence of chemical vapor deposition (CVD) growth of carbon nanotubes (CNTs) and capillary self-assembly. A wide variety of robust 3D CNT microstructures can be fabricated, including microsprings and tilted microcantilevers. The proposed method promises the development of new microsystems, engineered surfaces and metamaterials.

Novel method for fabricating corrugated 3D carbon nanotube microstructures

Leuven, Belgium | Posted on December 16th, 2011

Researchers from imec and the University of Michigan present a method that for the first time allows the stacking of sequentially folded CNT micro-architectures. Arrays of such structures with a great variety of lateral dimensions (i.e., from <10µm to >100 µm) can be fabricated in close proximity on the same substrate, thus enabling integration of heterogeneous architectures in a scalable way. The attractive properties of the CNTs suggest that the method will find several new applications. Examples are the development of new microsystems with novel functionalities, as well as engineered materials such as omniphobic surfaces and dry adhesives.

The process starts by lithographic patterning of a catalyst film on a Si wafer, followed by growth of vertically-aligned CNT microstructures by thermal CVD at atmospheric pressure. Next, the straight CNT microstructures are transformed into sloped shapes by condensation and subsequent evaporation of liquid on the surface, the so-called capillary forming step. These two process steps can then be iterated and finally result in 3D corrugated structures. Arrays of such structures with varying lateral dimensions can be fabricated as illustrated below. This study further focuses on the fabrication of (arrays of) CNT ‘bellows' and CNT ‘cantilevers'.

First, the utility of cylindrical CNT ‘bellows' for use as vertical microsprings was investigated. It was found that the properties of the corrugated CNT microsprings can be tuned on the basis of their geometry alone. E.g., the compliance (which is the reciprocal of the stiffness) of the springs is inversely related to their wall thickness. Microspring arrays are used commercially in probecards for the testing of electronic devices. For this particular application, the availability of a method for making arrays of compliant springs with small footprint is an important step forward.

Secondly, the method was used to create cantilevers. Iteration of growth and forming of semicircular shapes creates intricate overhanging cantilevers with multiple folds. These structures can be packed in dense arrays and oriented in any direction. We anticipate that these structures will be useful in the design of surfaces with anisotropic wetting properties and directional adhesives, where the asymmetric geometry, nanoscale texture, mechanical compliance and strong van der Waals attraction of the CNTs could be advantageous.

Finally, this process enables cost effective fabrication of vertical CNT walls with a thickness below 300 nm, and aspect ratios exceeding 1:100.

Detailed results have been published in ACS-Nano, vol. 5, n° 9, 2011, pp. 7310-7317. The paper was selected to appear on the cover of the journal [link to pubs.acs.org/action/showLargeCover?issue=361281616&]. Michael De Volder, first author of the paper, was recently also co-awarded the University of Michigan Robert M. Caddell Award along with his teammates Sameh Tawfick, Sei Jin Park, Davor Copic, and Prof. John Hart, for their work on the integration of carbon nanotubes (CNTs) in microsystems. Finally, a collection of SEM images of these corrugated CNTs structures were awarded the 1st prize at the ‘Science as Art Competition 2011' of the Material Research Society www.mrs.org/f11-science-as-art/.

####

About IMEC
Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China, India and Japan. Its staff of about 1,900 people includes more than 500 industrial residents and guest researchers. In 2010, imec's revenue (P&L) was 285 million euro. Further information on imec can be found at www.imec.be.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shangai) Co. Ltd.) and imec India (Imec India Private Limited).

For more information, please click here

Contacts:
Hanne Degans
External Communications Officer
T: +32 16 28 17 69
Mobile: +32 486 065 175


Barbara Kalkis
Maestro Marketing & Public Relations
T : +1 408 996 9975
M : +1 408 529 4210

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Discoveries

Iranian Scientists Apply Nanotechnology to Produce Surgery Suture October 23rd, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Materials/Metamaterials

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Announcements

Nanoparticle technology triples the production of biogas October 23rd, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Research partnerships

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE