Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Almost noiseless nanomechanical microwave amplifier

Abstract:
Physicists in Low Temperature Laboratory of Aalto University have shown how a nanomechanical oscillator can be used for detection and amplification of feeble radio waves or microwaves.

Almost noiseless nanomechanical microwave amplifier

Helsink, Finland | Posted on December 15th, 2011

A measurement using such a tiny device, resembling a miniaturized guitar string, can be performed with the least possible disturbance. The results were recently published in the most prestigious scientific arena, the British journal Nature.

The researchers cooled the nanomechanical oscillator, thousand times thinner than a human hair, down to a low temperature near the absolute zero at -273 centigrade. Under such extreme conditions, even nearly macroscopic sized objects follow the laws of quantum physics which often contradict common sense. In the Low Temperature Laboratory experiments, the nearly billion atoms comprising the nanomechanical resonator were oscillating in pace in their shared quantum state.

The scientists had fabricated the device in contact with a superconducting cavity resonator, which exchanges energy with the nanomechanical resonator. This allowed amplification of their resonant motion. This is very similar to what happens in a guitar, where the string and the echo chamber resonate at the same frequency. Instead of the musician playing the guitar string, the energy source was provided by a microwave laser.

Microwaves get amplified by interaction of quantum oscillations
Researchers from the Low Temperature Laboratory, Aalto University, have shown how to detect and amplify electromagnetic signals almost noiselessly using a guitar-string like mechanical vibrating wire. In the ideal case the method adds only the minimum amount of noise required by quantum mechanics.

The presently used semiconductor transistor amplifiers are complicated and noisy devices, and operate far away from a fundamental disturbance limit set by quantum physics. The Low Temperature Laboratory scientists showed that by taking advantage of the quantum resonant motion, injected microwave radiation can be amplified with little disturbance. The principle hence allows for detecting much weaker signals than usually.

̶ Any measurement method or device always adds some disturbance. Ideally, all the noise is due vacuum fluctuations predicted by quantum mechanics. In theory, our principle reaches this fundamental limit. In the experiment, we got very close to this limit, says Dr. Francesco Massel.

̶ The discovery was actually quite unexpected. We were aiming to cool the nanomechanical resonator down to its quantum ground state. The cooling should manifest as a weakening of a probing signal, which we observed. But when we slightly changed the frequency of the microwave laser, we saw the probing signal to strengthen enormously. We had created a nearly quantum limited microwave amplifier, says Academy Research Fellow Mika Sillanpää who planned the project and made the measurements.

Certain real-life applications will benefit from the better amplifier based on the new Aalto method, but reaching this stage requires more research effort. Most likely, the mechanical microwave amplifier will be first applied in related basic research, which will further expand our knowledge of the borderline between the everyday world and the quantum realm.

According to Academy Research Fellow Tero Heikkilä, the beauty of the amplifier is in its simplicity: it consists of two coupled oscillators. Therefore, the same method can be realized in basically any media. By using a different structure of the cavity, one could detect terahertz radiation which would also be a major application.

The research was carried out in the Low Temperature Laboratory, which belongs to the Aalto University School of Science, and is part of the Centre of Excellence in Low Temperature Quantum Phenomena and Devices of the Finnish Academy. The devices used in the measurements were fabricated by VTT Nanotechnologies and microsystems. The research was funded by the Finnish Academy, European Research Council ERC, and the European Union.

####

About Aalto University
Established in 2010, the Aalto University is a new university with centuries of experience. The Aalto University was created from the merger of three Finnish universities: The Helsinki School of Economics, Helsinki University of Technology and The University of Art and Design Helsinki. Aalto University School of Science and Technology has been divided into four new schools starting from 1st of January 2011. The six schools of Aalto University are all leading and renowned institutions in their respective fields and in their own right.

The combination of six schools opens up new possibilities for strong multi-disciplinary education and research. The new university's ambitious goal is to be one of the leading institutions in the world in terms of research and education in its own specialized disciplines.

For more information, please click here

Contacts:
Mika Sillanpää
Aalto University School of Science

tel. +358 9 470 24898

Tero Heikkilä
Aalto University School of Science

tel. +358 9 470 22396

Francesco Massel
Aalto University School of Science

puh. +358 50 3015566

Copyright © Aalto University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the Nature article - Francesco Massel, T.T. Heikkilä, J.-M. Pirkkalainen, S.U. Cho, H. Saloniemi, P.J. Hakonen, and Mika A. Sillanpää: Microwave amplification with nanomechanical resonators, Nature:

Related News Press

News and information

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

Physics

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

Seeing quantum motion August 30th, 2015

NEMS

Quantum states in a nano-object manipulated using a mechanical system August 3rd, 2015

Investigation of Mechanical Behavior of Heterogeneous Nanostructures in Iran July 13th, 2015

Weighing -- and imaging -- molecules one at a time April 28th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Discoveries

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

Announcements

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic