Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Almost noiseless nanomechanical microwave amplifier

Abstract:
Physicists in Low Temperature Laboratory of Aalto University have shown how a nanomechanical oscillator can be used for detection and amplification of feeble radio waves or microwaves.

Almost noiseless nanomechanical microwave amplifier

Helsink, Finland | Posted on December 15th, 2011

A measurement using such a tiny device, resembling a miniaturized guitar string, can be performed with the least possible disturbance. The results were recently published in the most prestigious scientific arena, the British journal Nature.

The researchers cooled the nanomechanical oscillator, thousand times thinner than a human hair, down to a low temperature near the absolute zero at -273 centigrade. Under such extreme conditions, even nearly macroscopic sized objects follow the laws of quantum physics which often contradict common sense. In the Low Temperature Laboratory experiments, the nearly billion atoms comprising the nanomechanical resonator were oscillating in pace in their shared quantum state.

The scientists had fabricated the device in contact with a superconducting cavity resonator, which exchanges energy with the nanomechanical resonator. This allowed amplification of their resonant motion. This is very similar to what happens in a guitar, where the string and the echo chamber resonate at the same frequency. Instead of the musician playing the guitar string, the energy source was provided by a microwave laser.

Microwaves get amplified by interaction of quantum oscillations
Researchers from the Low Temperature Laboratory, Aalto University, have shown how to detect and amplify electromagnetic signals almost noiselessly using a guitar-string like mechanical vibrating wire. In the ideal case the method adds only the minimum amount of noise required by quantum mechanics.

The presently used semiconductor transistor amplifiers are complicated and noisy devices, and operate far away from a fundamental disturbance limit set by quantum physics. The Low Temperature Laboratory scientists showed that by taking advantage of the quantum resonant motion, injected microwave radiation can be amplified with little disturbance. The principle hence allows for detecting much weaker signals than usually.

̶ Any measurement method or device always adds some disturbance. Ideally, all the noise is due vacuum fluctuations predicted by quantum mechanics. In theory, our principle reaches this fundamental limit. In the experiment, we got very close to this limit, says Dr. Francesco Massel.

̶ The discovery was actually quite unexpected. We were aiming to cool the nanomechanical resonator down to its quantum ground state. The cooling should manifest as a weakening of a probing signal, which we observed. But when we slightly changed the frequency of the microwave laser, we saw the probing signal to strengthen enormously. We had created a nearly quantum limited microwave amplifier, says Academy Research Fellow Mika Sillanpää who planned the project and made the measurements.

Certain real-life applications will benefit from the better amplifier based on the new Aalto method, but reaching this stage requires more research effort. Most likely, the mechanical microwave amplifier will be first applied in related basic research, which will further expand our knowledge of the borderline between the everyday world and the quantum realm.

According to Academy Research Fellow Tero Heikkilä, the beauty of the amplifier is in its simplicity: it consists of two coupled oscillators. Therefore, the same method can be realized in basically any media. By using a different structure of the cavity, one could detect terahertz radiation which would also be a major application.

The research was carried out in the Low Temperature Laboratory, which belongs to the Aalto University School of Science, and is part of the Centre of Excellence in Low Temperature Quantum Phenomena and Devices of the Finnish Academy. The devices used in the measurements were fabricated by VTT Nanotechnologies and microsystems. The research was funded by the Finnish Academy, European Research Council ERC, and the European Union.

####

About Aalto University
Established in 2010, the Aalto University is a new university with centuries of experience. The Aalto University was created from the merger of three Finnish universities: The Helsinki School of Economics, Helsinki University of Technology and The University of Art and Design Helsinki. Aalto University School of Science and Technology has been divided into four new schools starting from 1st of January 2011. The six schools of Aalto University are all leading and renowned institutions in their respective fields and in their own right.

The combination of six schools opens up new possibilities for strong multi-disciplinary education and research. The new university's ambitious goal is to be one of the leading institutions in the world in terms of research and education in its own specialized disciplines.

For more information, please click here

Contacts:
Mika Sillanpää
Aalto University School of Science

tel. +358 9 470 24898

Tero Heikkilä
Aalto University School of Science

tel. +358 9 470 22396

Francesco Massel
Aalto University School of Science

puh. +358 50 3015566

Copyright © Aalto University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the Nature article - Francesco Massel, T.T. Heikkilä, J.-M. Pirkkalainen, S.U. Cho, H. Saloniemi, P.J. Hakonen, and Mika A. Sillanpää: Microwave amplification with nanomechanical resonators, Nature:

Related News Press

News and information

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Physics

Liquid crystal molecules form nano rings: Quantized self-assembly enables design of materials with novel properties February 7th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

NEMS

Leti Scientists Participating in Sessions on Med Tech, Automotive Technologies, MEMS, Si-photonics and Lithography at SEMICON Europa: Teams also Will Demonstrate Technology Advances in Telecom, Data Fusion, Energy, Silicon Photonics and 3D Integration October 18th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Nano-photonics meets nano-mechanics: Controlling on-chip nano-optics by graphene nano-opto-mechanics January 22nd, 2016

Mechanical quanta see the light January 20th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Discoveries

Basque researchers turn light upside down February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Announcements

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project