Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Understanding how cancer spreads: Nanotech single-cell monitoring technique could give insights

Remy Elbez, a doctoral student in applied physics, takes a sample of a solution that contains magnetized cervical cancer cells. He will place several drops of the solution in a special magnetic field. Then, after placing the whole apparatus under a microscope, he can watch the cells spin on a screen and determine their shape and status from their rotation rates. This new technique could help doctors understand the process of cancer metastasis. Photo by Nicole Casal Moore
Remy Elbez, a doctoral student in applied physics, takes a sample of a solution that contains magnetized cervical cancer cells. He will place several drops of the solution in a special magnetic field. Then, after placing the whole apparatus under a microscope, he can watch the cells spin on a screen and determine their shape and status from their rotation rates. This new technique could help doctors understand the process of cancer metastasis.

Photo by Nicole Casal Moore

Abstract:
A technique that lets researchers monitor single cancer cells in real time as they float in liquid could help doctors study the breakaway tumor cells that cause metastasis. Metastasis is the process of the disease spreading through the body.

Understanding how cancer spreads: Nanotech single-cell monitoring technique could give insights

Ann Arbor, MI | Posted on December 14th, 2011

The approach, developed at the University of Michigan, could also pave the way for new types of targeted therapies that go beyond personalized medicine, researchers say.

"We're looking toward individualized treatment, not just to the person, but to the cell," said Remy Elbez, a doctoral student in applied physics. He is a co-author of a paper on the work published Dec. 13 in PLoS ONE.

In recent years, researchers have come to understand that not all cells in a cancerous tumor share the same genetic code. This means some are more difficult to kill than others. And techniques that enable single-cell study are in demand. Approaches that process many cells at once aren't as useful for researchers who want to look, for example, at a small number of cells that a particular cancer drug left alive.

One particularly dangerous type of cancer cell that scientists want to know more about is the circulating tumor cell. These cells have separated from the original tumor and set off in the bloodstream to invade distant tissues. Scientists know that they're different from the cells that stay put. They don't divide rapidly, for example. At the same time, they're difficult to study for several reasons. They're hard to find because they only make up less than one in a trillion blood cells. And they operate in motion, so tamping them down to a Petri dish doesn't reveal their true nature.

"In our suspension, the cells can flow freely and behave closer to the way they do in the body," said Raoul Kopelman, the Richard Smalley Distinguished University Professor of Chemistry, Physics and Applied Physics, and a professor in biomedical engineering and biophysics.

"This is a completely new technique for monitoring a single cell's growth and death processes in real time in a suspension."

A better understanding of circulating tumor cells could one day lead to therapies that focus on them, and help to block cancer from spreading beyond its initial site, the researchers say. That could lengthen patients' lives.

"It is the consequences of metastasis that lead to the death of most cancer patients," said Kenneth Pienta, M.D., a professor of internal medicine and urology who studies cancer metastasis.

Their approach uses magnets to rotate cancer cells in a way that lets their spinning speed reveal their shape and status. A growing, dividing or dying cell spins slower in the researchers' system. To demonstrate that their technique works, they embedded cervical cancer cells with commercially available magnetic nanoparticles in a solution. They then placed the solution in a magnetic field that rotates fast enough to achieve an asynchronous rotation rate. Because of the asynchronous rotation, the cells are more affected by drag and the larger, dying or dividing cells rotate much slower, and with specific patterns.

"For the first time, we enable the cell itself to be the sensor. It can tell us when it is dying," Elbez said. "Other methods such as fluorescent dyes rely on indirect evidence."

The new system could advance drug testing, the researchers say. It could enable scientists to zero in on the most resistant cells.

It could also pave the way for more personalized cancer treatment. In essence, mini drug-trials could be conducted on a small sample of tumor cells before subjecting patients to rounds of chemotherapy that may or may not work.

"Personalized cancer treatments allow for treatment of the right patient at the right time with the right medicine," Pienta said. "More importantly, it can avoid treatment with the wrong medicine, which does the patient no good and wastes money."

The paper is titled "Nanoparticle induced cell magneto-rotation: Monitoring morphology, stress and drug sensitivity of a suspended single cancer cell." In addition to Elbez, Kopelman and Pienta, other co-authors are Brandon McNaughton and Lalit Patel. The researchers are working to commercialize this technology. McNaughton is a founder of the U-M start-up Life Magnetics. The research is funded by the National Institutes of Health.

####

For more information, please click here

Contacts:
Written by:
Nicole Casal Moore

(734) 647-7087

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Raoul Kopelman

Kenneth Pienta

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Nanomedicine

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project