Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanoparticles help Mayo Clinic researcher deliver steroids to retina: Research offers potential treatment for macular degeneration and retinitis pigmentosa

Abstract:
Hitching a ride into the retina on nanoparticles called dendrimers offers a new way to treat age-related macular degeneration and retinitis pigmentosa. A study by investigators at Mayo Clinic, Wayne State University and Johns Hopkins Medicine shows that steroids attached to the dendrimers target the damage-causing cells associated with neuroinflammation, leaving the rest of the eye unaffected and preserving vision. The findings appear in the journal Biomaterials.

Nanoparticles help Mayo Clinic researcher deliver steroids to retina: Research offers potential treatment for macular degeneration and retinitis pigmentosa

Rochester, MN | Posted on December 13th, 2011

Dry age-related macular degeneration and retinitis pigmentosa are caused by neuroinflammation, which progressively damages the retina and can lead to blindness. Macular degeneration is the primary cause of vision loss in older Americans, affecting more than 7 million people, according to the National Institutes of Health. Retinitis pigmentosa encompasses many genetic conditions affecting the retina and impacts 1 in 4,000 Americans, the NIH estimates.

"There is no cure for these diseases," says Mayo Clinic ophthalmologist Raymond Iezzi, M.D., a lead author of the study. "An effective treatment could offer hope to hundreds of millions of patients worldwide."

Iezzi and fellow principal author Rangaramanujam Kannan, Ph.D., an ophthalmology professor at The Wilmer Eye Institute of Johns Hopkins, developed an intracellular, sustained-release drug delivery system. The research, conducted in part at Wayne State University's Kresge Eye Institute with collaboration from Wayne State's College of Engineering and Ligon Research Center of Vision, tested the dendrimer delivery system in rats that develop neuroinflammation.

The target was microglial cells, inflammatory cells in charge of cleaning up dead and dying material in the eye, Dr. Iezzi says. When activated as "trash collectors," the cells cause damage via neuroinflammation -- a hallmark of each disease. The microglial cells gobble up the dendrimers, and the drug then shuts down the cells' activity.

"Surprisingly, the activated microglia in the degenerating retina appeared to eat the dendrimer selectively, and retain them for at least a month. The drug is released from the dendrimer in a sustained fashion inside these cells, offering targeted neuroprotection to the retina," Kannan says.

The treatment reduced neuroinflammation in the rat model and protected vision by preventing injury to photoreceptors in the retina. Though the steroid offers only temporary protection, the treatment as a whole provides sustained relief from neuroinflammation.

###
The study was funded by grants from the Ligon Research Center of Vision at Wayne State University, the Ralph C. Wilson Foundation and Research to Prevent Blindness.

The researchers declare no conflict of interest.

Co-authors include Bharath Raja Guru, Ph.D., Case Western Reserve University; Inna Glybina and Alexander Kennedy, both of Wayne State University; and Manoj Mishra, Ph.D., of Johns Hopkins University.

####

About Mayo Clinic
Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life.

For more information, please click here

Contacts:
Robert Nellis

507-284-5005

Copyright © Mayo Clinic

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Nanomedicine

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

European Commission opens the gate towards the implementation of Nanomedicine Translation Hub October 16th, 2014

Discoveries

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Announcements

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Research partnerships

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE