Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Colossal Conducting Variation at the Nanoscale: Colossal magnetoresistance phenomenon occurs when nanoclusters form at specific temperatures

Abstract:
Researchers at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and the Universidad San Francisco de Quito in Ecuador have found that, at just the right temperatures, nanoclusters form and improve the flow of electrical current through certain oxide materials. This work could be used in a number of industrial applications including spintronics, which exploit electrical and magnetic properties for use in solid-state electronics. The researchers' findings will appear in the Proceedings of the National Academy of Sciences during the week of December 12, 2011.

Colossal Conducting Variation at the Nanoscale: Colossal magnetoresistance phenomenon occurs when nanoclusters form at specific temperatures

Upton, NY | Posted on December 12th, 2011

The unusually large variation in resistance to the flow of electricity in the presence of a magnetic field observed in some oxide materials is a phenomenon known as colossal magnetoresistance. The oxides involved in this research have a specific arrangement among the atoms that make up the material. The scientists found that, at particular temperatures in a magnetic field, nanoclusters about 10 atoms in size formed in these materials. These nanoclusters had electronic properties different from the material's whole and were essential to the emergence of colossal magnetoresistance.

"Until now, scientists could only speculate that nanoclusters play a critical role in colossal magnetoresistance. Our work pinpointing the nanoclusters with improved conductivity is a big step in understanding this phenomenon and the fundamental laws of materials," said Brookhaven physicist Jing Tao, lead author on the paper.

"As we cooled samples from room temperature to about 250 Kelvin (-23 degrees Celsius), we found that colossal magnetoresistance emerged as nanoclusters formed and became most dense," Jing explained. "We saw the nanoclusters form and connect a path in the crystal, and the whole material became conducting."

These nanoclusters were thought to only act as insulators with different magnetic properties, Jing added. This work shows that these properties are temperature dependent. In the presence of a magnetic field and at the proper temperature, the nanoclusters become conductive and ferromagnetic to allow colossal magnetoresistance to occur.

For this research, scientists at the Universidad San Francisco de Quito in Ecuador grew crystals of manganite - manganese oxide doped with varying quantities of calcium and the rare-earth metal lanthanum. Scientists at Brookhaven then bombarded the crystals with beams of high-powered, negatively charged electrons using the Lab's Transmission Electron Microscope to study their properties. As the electrons passed through the crystal, the scientists analyzed their paths and energy levels to determine properties such as structure and magnetism, as well as the nanoclusters' role in the emergence of colossal magnetoresistance.

"Thanks to the unique instruments at Brookhaven, we also found a new level of complexity in the material with colossal magnetoresistance," said Tao. "We know now that these nanoclusters form and enable colossal magnetoresistance at certain temperatures, but we don't yet know why or how they interact with the material as a whole.

"In the future when we learn more about the nanoclusters - for example, the details of their structure and whether they are charged - we can begin to improve the electrical performance of these materials."

The work completed at Brookhaven Lab was supported by DOE's Office of Science. Authors of the paper include Tao, Qing Jie, Marvin A. Schofield, LiJun Wu, Qiang Li, and Electron Microscopy and Nanostructure Group Leader Yimei Zhu, from Brookhaven Lab, as well as Dario Niebieskikwiat from the Universidad San Francisco de Quito. Additional scanning experiments were conducted at the University of Illinois.

Writer: Joe Gettler

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry, and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of the State University of New York, for and on behalf of Stony Brook University, the largest academic user of Laboratory facilities; and Battelle Memorial Institute, a nonprofit, applied science and technology organization. Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more (www.bnl.gov/newsroom) or follow Brookhaven Lab on Twitter (twitter.com/BrookhavenLab).

For more information, please click here

Contacts:
Karen McNulty Walsh
631 344-8350

or
Peter A. Genzer
631 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

President Obama Meets U.S. Laureates of 2014 Kavli Prizes August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Air Forceís 30-year plan seeks 'strategic agility' August 1st, 2014

Laboratories

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Sono-Tek Corporation Announces New Clean Room Rated Laboratory Facility in China July 18th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

President Obama Meets U.S. Laureates of 2014 Kavli Prizes August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Air Forceís 30-year plan seeks 'strategic agility' August 1st, 2014

Spintronics

University of Illinois study advances limits for ultrafast nano-devices July 10th, 2014

Harnessing magnetic vortices for making nanoscale antennas: Scientists explore ways to synchronize spins for more powerful nanoscale electronic devices April 30th, 2014

Could Diamonds Be A Computerís Best Friend? Landmark experiment reveals the precious gemís potential in computing March 24th, 2014

Spintronic Thermoelectric Power Generators: A step towards energy efficient electronic devices March 21st, 2014

Chip Technology

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Nanometrics Reports Second Quarter 2014 Financial Results July 30th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Discoveries

Iranian Scientists Produce CobaltĖAlumina Ceramic Nano Inks August 1st, 2014

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

Taking the guesswork out of cancer therapy: New molecular test kit predicts patientís survival and drug response August 1st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Announcements

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

President Obama Meets U.S. Laureates of 2014 Kavli Prizes August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Air Forceís 30-year plan seeks 'strategic agility' August 1st, 2014

Research partnerships

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE