Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Colossal Conducting Variation at the Nanoscale: Colossal magnetoresistance phenomenon occurs when nanoclusters form at specific temperatures

Abstract:
Researchers at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and the Universidad San Francisco de Quito in Ecuador have found that, at just the right temperatures, nanoclusters form and improve the flow of electrical current through certain oxide materials. This work could be used in a number of industrial applications including spintronics, which exploit electrical and magnetic properties for use in solid-state electronics. The researchers' findings will appear in the Proceedings of the National Academy of Sciences during the week of December 12, 2011.

Colossal Conducting Variation at the Nanoscale: Colossal magnetoresistance phenomenon occurs when nanoclusters form at specific temperatures

Upton, NY | Posted on December 12th, 2011

The unusually large variation in resistance to the flow of electricity in the presence of a magnetic field observed in some oxide materials is a phenomenon known as colossal magnetoresistance. The oxides involved in this research have a specific arrangement among the atoms that make up the material. The scientists found that, at particular temperatures in a magnetic field, nanoclusters about 10 atoms in size formed in these materials. These nanoclusters had electronic properties different from the material's whole and were essential to the emergence of colossal magnetoresistance.

"Until now, scientists could only speculate that nanoclusters play a critical role in colossal magnetoresistance. Our work pinpointing the nanoclusters with improved conductivity is a big step in understanding this phenomenon and the fundamental laws of materials," said Brookhaven physicist Jing Tao, lead author on the paper.

"As we cooled samples from room temperature to about 250 Kelvin (-23 degrees Celsius), we found that colossal magnetoresistance emerged as nanoclusters formed and became most dense," Jing explained. "We saw the nanoclusters form and connect a path in the crystal, and the whole material became conducting."

These nanoclusters were thought to only act as insulators with different magnetic properties, Jing added. This work shows that these properties are temperature dependent. In the presence of a magnetic field and at the proper temperature, the nanoclusters become conductive and ferromagnetic to allow colossal magnetoresistance to occur.

For this research, scientists at the Universidad San Francisco de Quito in Ecuador grew crystals of manganite - manganese oxide doped with varying quantities of calcium and the rare-earth metal lanthanum. Scientists at Brookhaven then bombarded the crystals with beams of high-powered, negatively charged electrons using the Lab's Transmission Electron Microscope to study their properties. As the electrons passed through the crystal, the scientists analyzed their paths and energy levels to determine properties such as structure and magnetism, as well as the nanoclusters' role in the emergence of colossal magnetoresistance.

"Thanks to the unique instruments at Brookhaven, we also found a new level of complexity in the material with colossal magnetoresistance," said Tao. "We know now that these nanoclusters form and enable colossal magnetoresistance at certain temperatures, but we don't yet know why or how they interact with the material as a whole.

"In the future when we learn more about the nanoclusters - for example, the details of their structure and whether they are charged - we can begin to improve the electrical performance of these materials."

The work completed at Brookhaven Lab was supported by DOE's Office of Science. Authors of the paper include Tao, Qing Jie, Marvin A. Schofield, LiJun Wu, Qiang Li, and Electron Microscopy and Nanostructure Group Leader Yimei Zhu, from Brookhaven Lab, as well as Dario Niebieskikwiat from the Universidad San Francisco de Quito. Additional scanning experiments were conducted at the University of Illinois.

Writer: Joe Gettler

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry, and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of the State University of New York, for and on behalf of Stony Brook University, the largest academic user of Laboratory facilities; and Battelle Memorial Institute, a nonprofit, applied science and technology organization. Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more (www.bnl.gov/newsroom) or follow Brookhaven Lab on Twitter (twitter.com/BrookhavenLab).

For more information, please click here

Contacts:
Karen McNulty Walsh
631 344-8350

or
Peter A. Genzer
631 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

French Institutes IRT Nanoelec and CMP Team up to Offer World’s First Service for Post-process 3D Technologies on Multi-Project-Wafer March 5th, 2015

The George Washington University Opens Science and Engineering Hall, Largest Building of Its Kind in D.C.: Building Represents Significant Investment in Research Programs and Facilities; Commitment to Solve Global Problems, Improve Lives of Millions March 5th, 2015

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Laboratories

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

New research could lead to more efficient electrical energy storage March 4th, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Govt.-Legislation/Regulation/Funding/Policy

New research could lead to more efficient electrical energy storage March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Spintronics

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

Insight into inner magnetic layers: Measurements at BESSY II have shown how spin filters forming within magnetic sandwiches influence tunnel magnetoresistance -- results that can help in designing spintronic component- February 17th, 2015

A new spin on spintronics: Michigan team tests radiation-resistant spintronic material, possibly enabling electronic devices that will work in harsh environments February 17th, 2015

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

Chip Technology

French Institutes IRT Nanoelec and CMP Team up to Offer World’s First Service for Post-process 3D Technologies on Multi-Project-Wafer March 5th, 2015

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Discoveries

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Announcements

The George Washington University Opens Science and Engineering Hall, Largest Building of Its Kind in D.C.: Building Represents Significant Investment in Research Programs and Facilities; Commitment to Solve Global Problems, Improve Lives of Millions March 5th, 2015

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Get ready for NanoDays! March 5th, 2015

Research partnerships

French Institutes IRT Nanoelec and CMP Team up to Offer World’s First Service for Post-process 3D Technologies on Multi-Project-Wafer March 5th, 2015

New research could lead to more efficient electrical energy storage March 4th, 2015

Cambrios and Heraeus Jointly Create New, High-Conductivity Transparent Conductors: Two Companies' Combined Products Dramatically Extend Flexible Substrate Capabilities for Next-Generation Mass-Market Technology Products March 3rd, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE