Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Carbon nanotubes best for 3D electronics

Two chips have interconnects that are filled with thousands of carbon nanotubes. The chips are then bonded with adhesive so that the carbon nanotubes are directly contacted. A connection using two such interconnects is pictured to the right.
Image credit: Teng Wang, Kjell Jeppson, Lilei Ye, Johan Liu. Carbon-Nanotube Through-Silicon Via Interconnects for Three-Dimensional Integration. Small, 2011, Volume 7, pages 2,3132,317. Copyright Wiley-VCH Verlag GmbH & Co. KGaA.
Two chips have interconnects that are filled with thousands of carbon nanotubes. The chips are then bonded with adhesive so that the carbon nanotubes are directly contacted. A connection using two such interconnects is pictured to the right. Image credit: Teng Wang, Kjell Jeppson, Lilei Ye, Johan Liu. Carbon-Nanotube Through-Silicon Via Interconnects for Three-Dimensional Integration. Small, 2011, Volume 7, pages 2,3132,317. Copyright Wiley-VCH Verlag GmbH & Co. KGaA.

Abstract:
Researchers at Chalmers have demonstrated that two stacked chips can be vertically interconnected with carbon nanotube vias through the chips. This new method improves possibilities for 3D integration of circuits, one of the most promising approaches for miniaturization and performance promotion of electronics.

Carbon nanotubes best for 3D electronics

Gothenburg, Sweden | Posted on December 12th, 2011

Three dimensional integration is a hot field within electronics since it offers a new way to package components densely and thus build tiny, well-functioning units. When stacking chips vertically, the most effective way to interconnect them is with electrical interconnects that go through the chip (instead of being wired together at the edges) - what are known as through-silicon vias.



The industry thus far has primarily used copper for this purpose; however, copper has several disadvantages that can limit the reliability of 3D electronics. Another major issue involves cooling when the chips get hot. The excellent thermal qualities of carbon nanotubes can play a decisive role in this respect.


Thus a research team at Chalmers is working with carbon nanotubes as conductive material for through-silicon vias. Carbon nanotubes - or tubes made of graphene whose walls are only one atom thick - are going to be the most reliable of all conductive materials if it is possible to use them on a large scale. This is the opinion of Kjell Jeppsson, a member of the research team.

"Potentially, carbon nanotubes have much better properties than copper, both in terms of thermal and electrical conductivity", he says. "Carbon nanotubes are also better suited for use with silicon from a purely mechanical point of view. They expand about the same amount as the surrounding silicon while copper expands more, which results in mechanical tension that can cause the components to break."

The researchers have demonstrated that two chips can be vertically interconnected with carbon nanotubes by through-silicon via interconnects, and that the chips can be bonded. They have also demonstrated that the same method can be used for electrical interconnection between the chip and the package.

PhD student Teng Wang - who defends his thesis on 12 December - has worked on production. He has developed a technique to fill through-silicon vias with thousands of carbon nanotubes. The chips are then bonded with an adhesive so that the carbon nanotubes are directly contacted and can thus conduct current through the chips.

"One difficulty involves producing carbon nanotubes with perfect properties and with the length we need to go through the chip," he says. "We have produced tubes that are 200 micrometers long, which can be compared to the diameter which is only 10 nanometers. Their properties, however, are not yet perfect."

For the method to be transferred to industrial production, manufacturing temperature needs to be reduced to a maximum of 450 degrees. This is a great challenge since carbon nanotubes are currently "grown" at a minimum of 700 degrees.

If successful, entirely new possibilities will arise for future shrinking of electronics - not least in terms of improved performance. The three dimensional integration using through-silicon vias provides significantly quicker signal transfers than traditional integration where chips are placed next to each other. Furthermore, through-silicon vias with carbon nanotubes provide less expensive production compared to the current technology that uses copper interconnects.

"There are several projects involving 3D integration underway in the industry, but there are potential problems with both cooling and reliability since they use copper," says Kjell Jeppsson. "If our method works on a large scale, I believe it will be in production within five years."

####

For more information, please click here

Contacts:
Kjell Jeppson
Department of Microtechnology and Nanoscience
+46 31-772 1856


Teng Wang
Department of Microtechnology and Nanoscience
+46 31-772 3092


Johan Liu
Department of Microtechnology and Nanoscience
+46 31-772 3067

Copyright © Chalmers University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The PhD thesis that is defended on December 12:

Read the researchers' articles in the scientific journals Small and Advanced Materials:

Related News Press

News and information

Harris & Harris Group Notes Announcements by Its Portfolio Companies During the Third Quarter of 2016 September 30th, 2016

INVECAS to Enable ASIC Designs for Tomorrows Intelligent Systems on GLOBALFOUNDRIES' FDX Technology: INVECAS to Collaborate with GLOBALFOUNDRIES to Provide IP and End-to-End ASIC Design Services on 22FDX and 12FDX Technologies September 30th, 2016

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Possible Futures

Harris & Harris Group Notes Announcements by Its Portfolio Companies During the Third Quarter of 2016 September 30th, 2016

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Nanosensors could help determine tumors ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Chip Technology

INVECAS to Enable ASIC Designs for Tomorrows Intelligent Systems on GLOBALFOUNDRIES' FDX Technology: INVECAS to Collaborate with GLOBALFOUNDRIES to Provide IP and End-to-End ASIC Design Services on 22FDX and 12FDX Technologies September 30th, 2016

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Mexican scientist in the Netherlands seeks to achieve data transmission ... speed of light September 20th, 2016

Nanotubes/Buckyballs/Fullerenes

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

World's most powerful X-ray takes a 'sledgehammer' to molecules September 14th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

For first time, carbon nanotube transistors outperform silicon September 8th, 2016

Discoveries

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Nanosensors could help determine tumors ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Announcements

Harris & Harris Group Notes Announcements by Its Portfolio Companies During the Third Quarter of 2016 September 30th, 2016

INVECAS to Enable ASIC Designs for Tomorrows Intelligent Systems on GLOBALFOUNDRIES' FDX Technology: INVECAS to Collaborate with GLOBALFOUNDRIES to Provide IP and End-to-End ASIC Design Services on 22FDX and 12FDX Technologies September 30th, 2016

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic