Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Quantum Tunneling Results in Record Transistor Performance

Dheeraj Mohata

Schematic and cross-section transmission electron microscopy (TEM) image of a fabricated vertical Heterojunction Tunnel Field Effect Transistor (HTFET)
Dheeraj Mohata

Schematic and cross-section transmission electron microscopy (TEM) image of a fabricated vertical Heterojunction Tunnel Field Effect Transistor (HTFET)

Abstract:
Controlling power consumption in mobile devices and large scale data centers is a pressing concern for the computer chip industry. Researchers from Penn State and epitaxial wafer maker IQE have created a high performance transistor that could help solve one of the vexing problems of today's MOSFET technology - reducing the power demand whether the transistors are idle or switching.

Quantum Tunneling Results in Record Transistor Performance

University Park, PA | Posted on December 10th, 2011

Today's digital information processing systems, from data centers to mobile laptops to smart phones, consume and dissipate significant power due to the constant power demand of the billions of transistors packed into the logic circuits on digital electronic devices. In traditional MOSFETs (metal-oxide semiconductor field-effect transistors), the building blocks of today's digital technology, a supply voltage of around one volt is required to gradually turn on the transistor. The current transistor technology faces inherent limits to reducing the power demand in electronic circuits due to physical laws related to the MOSFET design. Meanwhile, power demand will increase as the size of next generation transistors decreases and more devices are packed onto a computer chip.

In a paper to be delivered at the International Electron Devices Meeting in Washington DC on December 7th, Penn State doctoral candidate Dheeraj Mohata will discuss a new materials and device architecture that provides power savings and instant transistor on-off capability for future electronics. The paper, titled "Demonstration of MOSFET-Like On-Current Performance in Arsenide/Antimonide Tunnel FETs with Staggered Hetero-junctions for 300mV Logic Applications," reports the fabrication of a heterojunction field effect tunnel transistor with a 650% increase in drive current.

"This is the first time a tunneling field effect transistor has had a MOSFET-like On-state current," says Mohata's adviser Suman Datta, professor of electrical engineering. "By choosing two dissimilar semiconductor materials, Indium Gallium Arsenide and Gallium Arsenic Antimonide, and adjusting their composition, Deheeraj was able to engineer Hetero Tunnel FETs with a 7.6x improvement in drive current over the control sample." Tunneling FETs use the quantum mechanical property in which electrons are able to pass through a physical barrier if the barrier is thin enough. By increasing the drive current, the team was able to operate the Tunnel FET at reduced voltage, 300 milliVolt compared to 1V, thereby offering considerable power savings.

"If one can pick a proper combination of two different semiconductors and adjust their composition such that their band alignment results in a staggered configuration, it's possible to significantly increase the tunneling rate and enhance the drive current of the Tunnel FET," Datta explains.

The Penn State researchers designed and partnered with IQE, who produced the atomically precise multi-layer epiwafers using molecular beam epitaxy on which the transistors are built. The Penn State team then used advanced nanofabrication techniques to fabricate vertically oriented tunnel FET devices on the epiwafers in the Materials Research Institute's Nanofabrication Facility, whose director, professor of electrical engineering Theresa Mayer, was the co-principal investigator on the project. Comparing experimental results against the computer models used in the design phase enabled the researchers to verify their device simulations, and determine that Hetero Tunnel FETs would perform in a similar manner in the next generations of semiconductor devices, including future 7nm technology node devices.

"Work has to go on to see if this device can be further scaled to smaller dimensions and integrated on an industrial scale," Datta concludes. "If so, the impact will be significant in terms of low power integrated circuits that can work at 300 millivolts and below. This raises the possibility for self-powered circuits in conjunction with energy harvesting devices for active health monitoring, ambient intelligence, and implantable medical devices where the batteries haven't scaled in step with the devices."

Other members of the Penn State team along with Mohata, Datta, and Mayer include current and former graduate students, respectively, R. Bijesh and Salil Mujumdar in electrical engineering, graduate student Craig Eaton and assistant professor Roman Engel-Herbert in materials science and engineering, and Vijaykrishnan Narayanan, professor of computer engineering. Their research on Heterojunction Tunnel FETs was funded by Intel Corporation and the Nanoelectronics Research Institute (NRI)-supported Midwest Institute of Nanoelectronic Discovery (MIND). The Materials Research Institute's Nanofabrication Facility is a member of the National Nanofabrication Infrastructure Network (NNIN). Contact Suman Datta at .

The International Electron Devices Meeting (IEDM) is the world's premier forum for reporting breakthroughs in technology, design, manufacturing, physics, and the modeling of semiconductors and other electronic devices.

####

For more information, please click here

Contacts:
Suman Datta

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Chip Technology

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Announcements

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Events/Classes

Stretchy supercapacitors power wearable electronics August 25th, 2016

Semblant to Present at China Mobile Manufacturing Forum 2016 August 25th, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Impressive List of Doctors, Scientists Coming to Vail for Scientific Summit: The Second Vail Scientific Summit Convenes the Greatest Minds in Regenerative Medicine and Science August 17th, 2016

Quantum nanoscience

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

Prototype chip could help make quantum computing practical: Built-in optics could enable chips that use trapped ions as quantum bits August 9th, 2016

Diamond-based light sources will lay a foundation for quantum communications of the future: Electrified quantum diamond can become the heart of quantum networks and computers of the future August 7th, 2016

Scientists discover light could exist in a previously unknown form August 6th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic