Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > JPK reports on how graphenes are being studied using AFM to better characterize their properties at the Humboldt University in Berlin

Images taken on a 6 day old sample in the area of a single graphene: (a) Topography image recorded in contact mode under a normal force of 25 nN. Arrow indicates an area enlarged on (b) with two resolved DNA strands running nearly parallel to each other at a distance of 10 nm, as visualized by the inserted cross section. (c) Intermittent contact mode topography image acquired a few minutes after (a) with the same tip. (d) Intermittent contact mode phase contrast image of the same area.*
Images taken on a 6 day old sample in the area of a single graphene: (a) Topography image recorded in contact mode under a normal force of 25 nN. Arrow indicates an area enlarged on (b) with two resolved DNA strands running nearly parallel to each other at a distance of 10 nm, as visualized by the inserted cross section. (c) Intermittent contact mode topography image acquired a few minutes after (a) with the same tip. (d) Intermittent contact mode phase contrast image of the same area.*

Abstract:
JPK Instruments, a world-leading manufacturer of nanoanalytic instrumentation for research in life sciences and soft matter, reports on a keynote paper in Nano Letters where Dr Nikolai Severin and his co-workers from the group of Professor Jürgen P. Rabe have applied JPK's NanoWizard®II Ultra system to improve their understanding of the properties of graphene.

JPK reports on how graphenes are being studied using AFM to better characterize their properties at the Humboldt University in Berlin

Berlin, Germany | Posted on December 8th, 2011

Physics of Macromolecules group of Professor Jürgen P. Rabe has a central research goal to correlate structure and dynamics of molecular systems at interfaces with mechanical, electronic, optical and (bio-)chemical properties from molecular to macroscopic length and time scales. Manipulation and imaging of single molecules and supramolecular systems with a scanning force microscope (SFM) is of paramount importance to the understanding of structure formation and the measurement of mechanical properties. The group is also involved in understanding and developing molecular electronics and organic electronic properties.

Within this group is Dr Nikolai Severin, recently the lead author of a paper in Nano Letters* which shows the use of AFM in the study of graphenes. The electronic properties of graphenes depend sensitively on their deformation, and therefore strain-engineered graphene electronics is envisioned. In order to deform graphenes locally, the group has mechanically exfoliated single and few layer graphenes onto atomically flat mica surfaces covered with isolated double stranded plasmid DNA rings. Using scanning force microscopy in both contact and intermittent contact modes, they have found that the graphenes replicate the topography of the underlying DNA with high precision. The availability of macromolecules of different topologies, e.g., programmable DNA patterns render this approach promising for new graphene based device designs. Furthermore, the encapsulation of single macromolecules offers new prospects for analytical scanning probe microscopy techniques.

Dr Severin has seen that graphene provides enhanced protection of DNA molecules to shear forces exerted during scanning force microscopy in contact mode. In addition, graphene will act as a surface protective layer against the ambient, e.g., against oxidation, since it is impermeable to gases. Taking into account both the high electric conductivity of graphene and its extremely small thickness, this offers new opportunities for scanning probe microscopies and spectroscopies, such as scanning tunneling or tip enhanced Raman spectroscopy for analyses of both locally deformed graphene and confined molecules. Summarising, Dr Severin said, "We have successfully demonstrated that topography of graphenes can be controlled with the precision down to single molecules, i.e. graphenes are so flexible that they can replicate the topography of single molecules, when deposited on these molecules."

He also commented on some of the reasons for choosing to work with JPK NanoWizard® II for this work: "We are able to use a relatively large size of samples and scan areas of up to 30 microns. The linearized scanner is most important for us to precisely measure the height of DNA and their cross sections. The system shows little thermal drift which is important when making measurements on such small length scales. I also found the software was quite easy to use."

For more details about JPK's specialist products and applications for the bio and nano sciences, please contact JPK on +49 30533112070, visit the web site: www.jpk.com or see more on Facebook: www.jpk.com/facebook.

* Reference acknowledgment:

Replication of Single Macromolecules with Graphene, N . Severin*†, M. Dorn†, A. Kalachev‡, and J. P. Rabe*†;†Department of Physics, Humboldt-Universitaat zu Berlin, Newtonstrasse 15, 12489 Berlin, Germany. ‡ PlasmaChem GmbH, Rudower Chaussee 29, 12489 Berlin, Germany: Nano Lett., 2011, 11 (6), pp 2436-2439; DOI: 10.1021/nl200846f; Publication Date (Web): May 16, 2011; Copyright © 2011 American Chemical Society

####

About JPK Instruments (JPK)
JPK Instruments AG is a world-leading manufacturer of nanoanalytic instruments – particularly atomic force microscope (AFM) systems and optical tweezers – for a broad range of applications reaching from soft matter physics to nano-optics, from surface chemistry to cell and molecular biology. From its earliest days applying atomic force microscope (AFM) technology, JPK has recognized the opportunities provided by nanotechnology for transforming life sciences and soft matter research. This focus has driven JPK's success in uniting the worlds of nanotechnology tools and life science applications by offering cutting-edge technology and unique applications expertise. Headquartered in Berlin and with direct operations in Dresden, Cambridge (UK), Singapore, Tokyo and Paris (France), JPK maintains a global network of distributors and support centers and provides on the spot applications and service support to an ever-growing community of researchers.

For more information, please click here

Contacts:
JPK Instruments AG
Bouchéstrasse 12
Haus 2, Aufgang C
Berlin 12435
Germany
T +49 30533112070
F +49 30 5331 22555
www.jpk.com


Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA
United Kingdom
T +44(0)1799 521881
M +44(0)7843 012997
www.talking-science.com

Copyright © JPK Instruments (JPK)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Graphene/ Graphite

Researchers design one of the strongest, lightest materials known: Porous, 3-D forms of graphene developed at MIT can be 10 times as strong as steel but much lighter January 7th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Imaging

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

First use of graphene to detect cancer cells: System able to detect activity level of single interfaced cell December 20th, 2016

Announcements

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Tools

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanomechanics Inc. Continues Growth in Revenue and Market Penetration: Leading nanoindentation company reports continued growth in revenues and distribution channels on national and international scales December 27th, 2016

Nanometrics to Present at the 19th Annual Needham Growth Conference December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project