Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Imec presents MEMS energy harvester suitable for shock-induced energy harvesting in car tires

The calculated displacement of the harvester in a 0.325 radius car tire at 70 km/h.
The calculated displacement of the harvester in a 0.325 radius car tire at 70 km/h.

Abstract:
At today's 2011 IEEE International Electron Devices Meeting (IEDM) Imec and Holst Centre announced that they have made a micromachined harvester for vibration energy with a record output power of 489µW. Measurements and simulation show that the harvester is also suited for shock-induced energy harvesting in car tires, where it could power built-in sensors. In a tire, at 70km/h, the new device can deliver a constant 42µW, which is enough to power a simple wireless sensor node. These results, obtained within the research centre's program for Micropower Generation and Storage, are presented at the 2011 IEEE International Electron Devices Meeting (IEDM) in Washington (December 7-9).

Imec presents MEMS energy harvester suitable for shock-induced energy harvesting in car tires

Washington, DC, and Leuven, Belgium | Posted on December 8th, 2011

Imec's innovative harvester consists of a cantilever with a piezoelectric layer sandwiched between metallic electrodes, forming a capacitor. At the tip of the cantilever a mass is attached, which translates the macroscopic vibration into a vertical movement - putting strain on the piezoelectric layer and generating a voltage across the capacitor. As piezoelectric material, AlN (aluminum nitride) was chosen. The harvesters are packaged with a 6-inch wafer scale vacuum packaging process. The micromachining production process is compatible with low-cost mass-production fabrication.

The harvester has a record output power of 489µW when the vibrations closely match the MEMS' resonance vibration, which in this case is 1011Hz. Together with an automotive partner, imec also validated the use of the harvester for use in car tires. These submit the harvester to regular shocks, depending on the car's speed and the characteristics and condition of the tire. Each shock will displace the mass, after which it will start to ring down at its natural resonance frequency. During this ring-down period, which depends on the quality factor Q of the harvester, part of the mechanical energy is harvested. It is shown that in this way, a constant power output as high as 42µW can be harvested at a speed of 70km/h.

Micromachined vibration harvesters such as these are ideal devices to generate electricity from machines, engines and other industrial appliances which vibrate or undergo repetitive shocks. In these environments, they will power miniaturized autonomous sensor nodes, in situations where battery replacement is not sustainable or practical. Harvesters will allow sustainable monitoring on a massive scale. One example is Tire Pressure Monitoring Systems (TPMS) and its successors: a car tire with built-in sensors that monitor e.g. the tire integrity and pressure, the road condition, or the driving style.

####

About IMEC
Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China, India and Japan. Its staff of about 1,900 people includes more than 500 industrial residents and guest researchers. In 2010, imec's revenue (P&L) was 285 million euro. Further information on imec can be found at www.imec.be.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shangai) Co. Ltd.) and imec India (Imec India Private Limited).

About Holst Centre

Holst Centre is an independent open-innovation R&D centre that develops generic technologies for Wireless Autonomous Transducer Solutions and for Systems-in-Foil. A key feature of Holst Centre is its partnership model with industry and academia around shared roadmaps and programs. It is this kind of cross-fertilization that enables Holst Centre to tune its scientific strategy to industrial needs.

Holst Centre was set up in 2005 by imec (Flanders, Belgium) and TNO (The Netherlands) with support from the Dutch Ministry of Economic Affairs and the Government of Flanders. It is named after Gilles Holst, a Dutch pioneer in Research and Development and first director of Philips Research. Located on High Tech Campus Eindhoven, Holst Centre benefits from the state-of-the-art on-site facilities. Holst Centre has over 150 employees from around 25 nationalities and a commitment from more than 30 industrial partners. Visit us at www.holstcentre.com

For more information, please click here

Contacts:
Hanne Degans
External Communications Officer
T: +32 16 28 17 69
Mobile: +32 486 065 175


Barbara Kalkis
Maestro Marketing & Public Relations
T : +1 408 996 9975
M : +1 408 529 4210

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

MEMS

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Leti to Present Technological Platforms Targeting Industry’s Needs for the Future at Semicon West Workshop: Presentation at STS Session to Focus on Leti Advanced Lithography Programs for 1x Nodes and on Silicon Photonics at TechXPot June 25th, 2014

Discoveries

Iranian Scientists Apply Nanotechnology to Produce Surgery Suture October 23rd, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Announcements

Nanoparticle technology triples the production of biogas October 23rd, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Automotive/Transportation

Production of Anticorrosive Chromate Nanocoatings in Iran September 27th, 2014

Teijin Aramid’s carbon nanotube fibers awarded with Paul Schlack prize: New generation super fibers bring wave of innovations to fiber market September 25th, 2014

Next-Gen Luxury RV From Global Caravan Technologies Will Offer MagicView Roof and Windshield Using SPD-SmartGlass Technology From Research Frontiers: Recreational Vehicle Manufacturer Global Caravan Technologies (GCT) Features 28 Square Feet of MagicView™ SPD-SmartGlass September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Graphenea opens US branch October 16th, 2014

NTU develops ultra-fast charging batteries that last 20 years October 14th, 2014

Electrically conductive plastics promising for batteries, solar cells October 10th, 2014

Events/Classes

Iran-Made Respiratory Nano Masks Provided to Hajj Pilgrims October 23rd, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

NanoTechnology for Defense (NT4D) October 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE