Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Elusive ultrafine indoor air contaminants yield to NIST analysis

Abstract:
Researchers at the National Institute of Standards and Technology (NIST) spent 75 days on the job carrying out some very important homework—measurements in a "typical dwelling" of the release, distribution and fate of particles almost as tiny as the diameter of a single DNA molecule. Particles ranging in size from 100 nanometers down to 2.5 nanometers that were emitted by gas and electric stoves, hair dryers, power tools and candles were tracked and analyzed.*

Elusive ultrafine indoor air contaminants yield to NIST analysis

Gaithersburg, MD | Posted on December 7th, 2011

Monitoring such tiny particles was made possible by NIST advances in measurement capabilities. Measurements were carried out in weeks of experiments at a 340-square-meter (1,500-square-feet) test house on the NIST campus in Gaithersburg, Md. The researchers used the data to develop a model for predicting changes in the size and distribution of so-called ultrafine particles (technically, particles smaller than 100 nanometers) discharged by tools, appliances and other sources.

The measurements and model will further efforts to explain the dynamics of ultrafine particles, an area of growing interest among environmental and health researchers. They also will advance work to develop accurate and reliable methods for determining how changes in heating and cooling systems, often done to reduce energy consumption, will affect indoor environments.

"If we can understand and predict the dynamics of these extremely small indoor air contaminants, designers and equipment manufacturers can avoid potential negative impacts on the environment inside homes and buildings and may even devise ways to improve conditions and save energy at the same time," explains NIST engineer Andrew Persily.

Utrafine particles are produced naturally—by forest fires and volcanoes, for example—as well as by internal combustion engines, power plants and many other human-made sources. Although ever present in outdoor and indoor environments, ultrafine particles have eluded detection, and are not subject to federal or state air quality standards. However, particles with nanoscale dimensions have been associated with a variety of human health problems—especially heart, lung and blood disorders.

Because we spend most of our time indoors, however, the bulk of human exposure to ultrafine particles occurs in homes and buildings. Typically, releases of the tiny particles occur in periodic bursts—during cooking or hair drying, perhaps—but airborne concentrations during these episodes can greatly exceed outdoor levels, according to the NIST team.

The researchers measured the airborne concentrations of ultrafine particles at regular intervals after they were emitted by gas and electric stoves, candles, hair dryers and power tools. With their recently enhanced capabilities, the team could measure particles about four times smaller than in previous studies of indoor air contaminants.

Tests were conducted with the house central fan either on or off, which made a major difference in the behavior of ultrafine particles. With the fan off, these very small particles collide with each other and coagulate—or combine—during the first 2.5 minutes following a blast of ultrafine particles from an appliance or tool. In the process, they form successively larger particles, decreasing airborne concentrations of particles. As particles grow larger, they tend to settle on surfaces more quickly.

With the central fan recirculating air, ultrafine particles tend, in roughly equal proportions, to coagulate or settle on surfaces. Under both fan conditions, ventilation accounted for the removal of no more than about 5 percent of ultrafine particles.

Tests also revealed that for many indoor sources, such as stovetop cooking with gas, more than 90 percent of the particles emitted were smaller than 10 nanometers. In turn, emissions of smaller particles result in higher airborne concentrations that dissipate primarily through coagulation.

NIST guest researcher Donghyun Rim is lead author of the new article. Co-authors are Lance Wallace and Persily, both of NIST, and Jung-il Choi, of Yonsei University, South Korea.

####

For more information, please click here

Contacts:
Mark Bello

301-975-3776

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

*D. Rim, L. Wallace, A. Persily and J. Choi, Evolution of ultrafine particle size distributions following indoor episodic releases: Relative importance of coagulation, deposition and ventilation. Aerosol Science and Technology. Posted online Nov. 15, 2011. DOI 10.1080/02786826.2011.639317. Available online at:

Related News Press

News and information

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

BBC World Service to broadcast Forum discussion on graphene July 6th, 2015

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

Govt.-Legislation/Regulation/Funding/Policy

New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Influential Interfaces Lead to Advances in Organic Spintronics July 1st, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

Discoveries

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Announcements

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

BBC World Service to broadcast Forum discussion on graphene July 6th, 2015

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

Environment

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

NNI Publishes Workshop Report and Launches Web Portal on Nanosensors: Both outputs support the Nanotechnology Signature Initiative ‘Nanotechnology for Sensors and Sensors for Nanotechnology: Improving and Protecting Health, Safety, and the Environment’ June 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project