Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Stretching electrical conductance to the limit

Nongjan (NJ) Tao, director of the Center for Bioelectronics and Biosensors, Biodesign Institute.
Photo by: The Biodesign Institute at Arizona State University
Nongjan (NJ) Tao, director of the Center for Bioelectronics and Biosensors, Biodesign Institute.

Photo by: The Biodesign Institute at Arizona State University

Abstract:
Individual molecules have been used to create electrical components like resistors, transistors and diodes that mimic the properties of familiar semiconductors. But according to Nongjian (NJ) Tao, a researcher at the Biodesign Institute at ASU, unique properties inherent in single molecules also may allow clever designers to produce novel devices whose behavior falls outside the performance observed in conventional electronics.

Stretching electrical conductance to the limit

Tempe, AZ | Posted on December 6th, 2011

In research appearing in today's issue of Nature Nanotechnology, Tao describes a method for mechanically controlling the geometry of a single molecule, situated in a junction between a pair of gold electrodes that form a simple circuit. The manipulations produced over tenfold increase in conductivity.

The unusual, often non-intuitive characteristics of single molecules may eventually be introduced into a broad range of microelectronics, suitable for applications including biological and chemical sensing electronic and mechanical devices.

Delicate molecular manipulations requiring patience and finesse are routine for Tao, whose research at Biodesign's Center for Bioelectronics and Biosensors has included work on molecular diodes, graphene behavior and molecular imaging techniques. Nevertheless, he was surprised at the outcome described in the current paper: "If you have a molecule attached to electrodes, it can stretch like a rubber band," he says. "If it gets longer, most people tend to think that the conductivity will decrease. A longer wire is less conductive than a shorter wire."

Indeed, diminishing conductivity through a molecule is commonly observed when the distance between the electrodes attached to its surface is increased and the molecule becomes elongated. But according to Tao, if you stretch the molecule enough, something unexpected happens: the conductance goes up - by a huge amount. "We see at least 10 times greater conductivity, simply by pulling the molecule."

As Tao explains, the intriguing result is a byproduct of the laws of quantum mechanics, which dictate the behavior of matter at the tiniest scales: "The conductivity of a single molecule is not simply inversely proportional to length. It depends on the energy level alignment."

In the metal leads of the electrodes, electrons can move about freely but when they come to an interface - in this case, a molecule that sits in the junction between electrodes - they have to overcome an energy barrier. The height of this energy barrier is critical to how readily electrons can pass through the molecule. By applying a mechanical force to the molecule, the barrier is lowered, improving conductance.

"Theoretically, people have thought of this as a possibility, but this is a demonstration that it really happens," Tao says. "If you stretch the molecule and geometrically increase the length, it energetically lowers the barrier so electrons can easily go through. If you think in optical terms, it becomes more transparent to electrons."

The reason for this has to do with a property known as force-induced resonant tunneling. This occurs when the molecular energy moves closer to the Fermi level of the electrodes - that is, toward the region of optimal conductance. (See figure 1) Thus, as the molecule is stretched, it causes a decrease in the tunneling energy barrier.

For the experiments, Tao's group used 1,4'-Benzenedithiol, the most widely studied entity for molecular electronics. Further experiments demonstrated that the transport of electrons through the molecule underwent a corresponding decrease as the distance between the electrodes was reduced, causing the molecule's geometry to shift from a stretched condition to a relaxed or squeezed state. "We have to do this thousands of times to be sure the effect is robust and reproducible."

In addition to the discovery's practical importance, the new data show close agreement with theoretical models of molecular conductance, which had often been at variance with experimental values, by orders of magnitude.

Tao stresses that single molecules are compelling candidates for a new types of electronic devices, precisely because they can exhibit very different properties from those observed in conventional semiconductors.

Microelectromechanical systems or MEMS are just one domain where the versatile properties of single molecules are likely to make their mark. These diminutive creations represent a $40 billion a year industry and include such innovations as optical switches, gyroscopes for cars, lab-on-chip biomedical applications and microelectronics for mobile devices.

"In the future, when people design devices using molecules, they will have a new toolbox they can use."

In addition to Tao's position as director of Biodesign's Center for Bioelectronics and Biosensors, he holds a professorship in the Ira A. Fulton Schools of Engineering, School of Electrical, Computer and Energy Engineering.

####

For more information, please click here

Contacts:
Richard Harth

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

MEMS

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Leti Coordinating Project to Adapt Obstacle-Detection Technology Used in Autonomous Cars for Portable and Wearable Systems: INSPEX to Combine Knowhow of Nine European Organizations to Create Portable and Wearable Spatial-Exploration Systems February 2nd, 2017

Chip Technology

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

A firefly's flash inspires new nanolaser light July 18th, 2017

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GFs 22FDX technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Nanometrics to Announce Second Quarter Financial Results on August 1, 2017 July 14th, 2017

Sensors

Giant enhancement of electromagnetic waves revealed within small dielectric particles: Scientists have done for the first time direct measurements of giant electromagnetic fields July 8th, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Letis Autonomous-Vehicle System Embedded in Infineons AURIX Platform: Letis Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

New diode features optically controlled capacitance: Israeli researchers have developed a new optically tunable capacitor with embedded metal nanoparticles, creating a metal-insulator-semiconductor diode that is tunable by illumination. June 8th, 2017

Nanoelectronics

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

A firefly's flash inspires new nanolaser light July 18th, 2017

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GFs 22FDX technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Thinking thin brings new layering and thermal abilities to the semiconductor industry: In a breakthrough for the semiconductor industry, researchers demonstrate a new layer transfer technique called "controlled spalling" that creates many thin layers from a single gallium nitride July 11th, 2017

Discoveries

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Announcements

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Nanobiotechnology

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Researchers revolutionize vital conservation tool with use of gold nanotechnology and lasers: Cryopreservation study results have sweeping implications for wildlife conservation and human health July 15th, 2017

Nanomedicine opens door to precision medicine for brain tumors July 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project