Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > The first molybdenite microchip: Surpassing the physical limits of silicon

Abstract:
After having revealed the electronic advantages of molybdenite, EPFL researchers have now taken the next definitive step. The Laboratory of Nanoscale Electronics and Structures (LANES) has made a chip, or integrated circuit, confirming that molybdenite can surpass the physical limits of silicon in terms of miniaturization, electricity consumption, and mechanical flexibility.

The first molybdenite microchip: Surpassing the physical limits of silicon

Switzerland | Posted on December 5th, 2011

"We have built an initial prototype, putting from two to six serial transistors in place, and shown that basic binary logic operations were possible, which proves that we can make a larger chip," explains LANES director Andras Kis, who recently published two articles on the subject in the scientific journal ACS Nano.

In early 2011, the lab unveiled the potential of molybdenum disulfide (MoS2), a relatively abundant, naturally occurring mineral. Its structure and semi‐conducting properties make it an ideal material for use in transistors. It can thus compete directly with silicon, the most highly used component in electronics, and on several points it also rivals graphene.

Three atoms thick

"The main advantage of MoS2 is that it allows us to reduce the size of transistors, and thus to further miniaturize them," explains Kis. It has not been possible up to this point to make layers of silicon less than two nanometers thick, because of the risk of initiating a chemical reaction that would oxidize the surface and compromise its electronic properties. Molybdenite, on the other hand, can be worked in layers only three atoms thick, making it possible to build chips that are at least three times smaller. At this scale, the material is still very stable and conduction is easy to control.

Not as greedy

MoS2 transistors are also more efficient. "They can be turned on and off much more quickly, and can be put into a more complete standby mode," Kis explains.

Molybdenite is on a par with silicon in terms of its ability to amplify electronic signals, with an output signal that is four times stronger than the incoming signal. This proves that there is "considerable potential for creating more complex chips," Kis says. "With graphene, for example, this amplitude is about 1. Below this threshold, the output voltage would not be sufficient to feed a second, similar chip."

Built in flexibility

Molybdenite also has mechanical properties that make it interesting as a possible material for use in flexible electronics, such as eventually in the design of flexible sheets of chips. These could, for example, be used to manufacture computers that could be rolled up or devices that could be affixed to the skin.

####

For more information, please click here

Contacts:
Sarah Perrin

41-216-932-107

Andras Kis
Director
EPFL
Laboratory of Nanoscale Electronics and Structures (LANES)
+41 21 693 39 25

Copyright © Ecole Polytechnique Fédérale de Lausanne

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Articles on the ACS Nano site: MoS2 chips:

Mechanical properties of MoS2:

Related News Press

News and information

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Flexible Electronics

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Printed Electronics Europe - Plastic Logic shows a flexible OLED display for wearable devices April 11th, 2014

IDTechEx Printed Electronics Europe 2014 Award Winners April 1st, 2014

World's first flexible multi-functional timer to be distributed at Printed Electronics Europe March 24th, 2014

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Chip Technology

'Exotic' material is like a switch when super thin April 18th, 2014

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

Obducat has launched a new generation of SINDRE® Nano Imprint production system April 11th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Nanoelectronics

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Preview of Hands-on Nanotechnology Demos at ‘Chemistry of Wine’ Fundraiser to Show Nanotech Magic April 8th, 2014

Discoveries

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Announcements

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE