Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Scientists use laser imaging to assess safety of zinc oxide nanoparticles in sunscreen

Zinc oxide (ZnO) nanoparticle distribution in excised human skin. The black line represents the surface of the skin (top), blue represents ZnO nanoparticle distribution in the skin (stratum corneum), and pink represents skin.

Credit: Timothy Kelf, Macquarie University.
Zinc oxide (ZnO) nanoparticle distribution in excised human skin. The black line represents the surface of the skin (top), blue represents ZnO nanoparticle distribution in the skin (stratum corneum), and pink represents skin.

Credit: Timothy Kelf, Macquarie University.

Abstract:
Ultra-tiny zinc oxide (ZnO) particles with dimensions less than one-ten-millionth of a meter are among the ingredients list of some commercially available sunscreen products, raising concerns about whether the particles may be absorbed beneath the outer layer of skin. To help answer these safety questions, an international team of scientists from Australia and Switzerland have developed a way to optically test the concentration of ZnO nanoparticles at different skin depths. They found that the nanoparticles did not penetrate beneath the outermost layer of cells when applied to patches of excised skin. The results, which were published this month in the Optical Society's (OSA) open-access journal Biomedical Optics Express, lay the groundwork for future studies in live patients.

Scientists use laser imaging to assess safety of zinc oxide nanoparticles in sunscreen

Washington, DC | Posted on December 1st, 2011

The high optical absorption of ZnO nanoparticles in the UVA and UVB range, along with their transparency in the visible spectrum when mixed into lotions, makes them appealing candidates for inclusion in sunscreen cosmetics. However, the particles have been shown to be toxic to certain types of cells within the body, making it important to study the nanoparticles' fate after being applied to the skin. By characterizing the optical properties of ZnO nanoparticles, the Australian and Swiss research team found a way to quantitatively assess how far the nanoparticles might migrate into skin.

The team used a technique called nonlinear optical microscopy, which illuminates the sample with short pulses of laser light and measures a return signal. Initial results show that ZnO nanoparticles from a formulation that had been rubbed into skin patches for 5 minutes, incubated at body temperature for 8 hours, and then washed off, did not penetrate beneath the stratum corneum, or topmost layer of the skin. The new optical characterization should be a useful tool for future non-invasive in vivo studies, the researchers write.

####

For more information, please click here

Contacts:
Angela Stark

202-416-1443

Copyright © Optical Society of America

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: "Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport," Biomedical Optics Express, Vol. 2, Issue 12, pp. 3321-3333 (2011).

Related News Press

News and information

Self-assembling biomaterial forms nanostructure templates for human tissue formation April 27th, 2015

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Discoveries

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Two-dimensional semiconductor comes clean April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Announcements

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Personal Care

Application of Egg White in Production of Nanoparticles April 6th, 2015

Sunblock poses potential hazard to sea life August 20th, 2014

AQUANOVA receives Technology Leadership Award 2014 FROST & SULLIVAN honors NovaSOLŪ Technology again August 12th, 2014

Nanotechnology used in sunscreens: a Mexican achievement May 14th, 2014

Photonics/Optics/Lasers

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

Quantum 'paparazzi' film photons in the act of pairing up April 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project