Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Nano meets pharma at Harvard-BASF symposium: Experts gather this week to discuss the efficient creation and delivery of nanoscale particles of drugs

Abstract:
From targeted cancer chemotherapy to the guarantee of successful organ transplants, the 21st century may prove to be the age of big ideas in medicine.

Nano meets pharma at Harvard-BASF symposium: Experts gather this week to discuss the efficient creation and delivery of nanoscale particles of drugs

Cambridge, MA | Posted on November 30th, 2011

The drugs themselves, though, will be minuscule.

Experts in chemistry, applied physics, materials science, and pharmaceutical science are gathering this week for the BASF Advanced Research Initiative at Harvard University's symposium on pharmaceutical nanoformulations.

The two-day symposium, co-hosted by the Harvard School of Engineering and Applied Sciences (SEAS) and leading chemical company BASF, and held at the American Academy of Arts and Sciences in Cambridge, provides an opportunity for more than 200 leading researchers to discuss the challenges of modern medicine and the search for innovative solutions in nanotechnology.
Small particles with big potential

A great deal of research in engineering and the applied sciences today involves the manipulation of materials at the nanometer scale to achieve particular physical and chemical properties.

In the realm of pharmacy science, for instance, many recently developed drug compounds are strongly hydrophobic, meaning that their molecules do not dissolve easily in water—or, therefore, in the bloodstream.

"That problem can be overcome if the drug particles are tiny enough, on the order of a few billionths of a meter," says David Weitz, Mallinckrodt Professor of Physics and Applied Physics at SEAS and co-director of the BASF Advanced Research Initiative.

The grand challenge in the field of nanoformulations involves both the creation of precisely tailored, nanoscale particles of drugs and the safe and efficient delivery of those tiny particles to their exact targets within the human body.

BASF supports researchers at SEAS and across Harvard who are exploring a variety of approaches to this problem.

"I have a vision that is inspired in part by the fact that most people say it's impossible," says Weitz. "I think we can make meaningful quantities of valuable materials using microfluidics as a fabrication strategy. There are people at BASF who believe in that, and they've been supporting work in my lab."

At the symposium, he says, "I'll try to convince people that yes, we can."

Attendees will also hear from George Whitesides, Woodford L. and Ann A. Flowers University Professor at Harvard; and David Mooney, Robert P. Pinkas Family Professor of Bioengineering at SEAS. (Whitesides and Mooney are also core faculty members at the Wyss Institute for Biologically Inspired Engineering at Harvard.)

At SEAS, Mooney has been working to develop a therapeutic cancer vaccine that enhances the body's immune response by using novel biomaterials and nanoparticles to deliver signals to the cells that initiate adaptive immunity.

(The full list of speakers is available here.)
Joining competencies: Industry meets academia

The BASF Advanced Research Initiative at Harvard University represents a powerful model for university-industry collaboration, providing direct funding to faculty, graduate students, and researchers at SEAS and across the University. Created in October 2007, the initiative fosters a vibrant and dynamic intellectual exchange and accelerates the adoption of significant new technologies.

"Innovations succeed best of all in collaboration with good partners," says Jens Rieger, Senior Vice President, Polymer Research Division, BASF SE, and co-director of the BASF Advanced Research Initiative at Harvard. "Our research cooperation with Harvard has not only strengthened our research network in the United States, but provided an optimum basis for collectively harnessing the innovative potential of new technologies to confront global challenges. Together we have demonstrated that we have formed the right team to find sustainable solutions for enhanced quality of life."

BASF supports research in nine different laboratories at Harvard, involving work in materials science, applied mathematics, applied physics, bioengineering, molecular and cellular biology, microbiology and immunobiology, and chemistry and chemical biology. Nanopharmaceuticals represent one thrust of the research; the other involves preventing or removing biofilms—a type of bacterial growth that can cause serious diseases in humans and are a major concern in industrial processes and water management.

BASF has provided Harvard with direct funding since 2007, supporting the careers of 22 graduate students and 32 postdoctoral researchers. The collaboration has led to a number of patents and publications.

"The partnership works because BASF is an organization that brings us really intellectually challenging problems, that incorporates our results into its business, that learns from us, and that supports our research," says Weitz. "The value to them, in turn, is that we bring people who are a little bit removed from the day-to-day pressures of their business, but who can work together constructively to tackle difficult problems in a multidisciplinary way.

"This has become a model for interactions between industry and academia," Weitz adds.

####

About Harvard's School of Engineering and Applied Sciences (SEAS)
Engineering and applied sciences at Harvard has a long and distinguished history at Harvard, beginning with the creation of the Lawrence Scientific School in 1847 (named for donor Abbott Lawrence).

During the 19th and 20th centuries, the structure to support faculty and research in engineering applied sciences underwent several reorganizations (ranging from a graduate school, department (several), and division) and names (from DEAP to DAS to DEAS).

In 2007, in recognition of the growing preeminence of engineering and applied sciences, the University transitioned the former Division of Engineering and Applied Sciences into a school.

Through collaboration with researchers from all parts of Harvard, other universities, and industry, the Harvard School of Engineering and Applied Sciences (SEAS) brings discovery and innovation directly to bear on improving human life and society in the 21st century.

In pursuing its aims, SEAS will grow, but will remain: a different kind of engineering program rooted in science, interdisciplinary in culture, and committed to embracing Harvard’s breadth and depth across the sciences and professions.

About BASF

BASF is the world’s leading chemical company. Its portfolio ranges from chemicals, plastics, performance products, and agricultural products to oil and gas. As a reliable partner BASF creates chemistry to help its customers in virtually all industries to be more successful. With its high-value products and intelligent solutions, BASF plays an important role in finding answers to global challenges such as climate protection, energy efficiency, nutrition, and mobility. BASF posted sales of about €63.9 billion in 2010 and had approximately 109,000 employees as of the end of the year. BASF shares are traded on the stock exchanges in Frankfurt (BAS), London (BFA) and Zurich (AN).
Document Actions

For more information, please click here

Contacts:
Caroline Perry
(617) 496-1351

Copyright © Harvard's School of Engineering and Applied Sciences (SEAS)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Academic/Education

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

A Quantum Leap: $25M grant makes UC Santa Barbara home to the nation’s first NSF-funded Quantum Foundry, a center for development of materials for quantum information-based technologies September 16th, 2019

LPU signs MoU with Bruker India for Research Cooperation in Nanotechnology and Material Science September 3rd, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Nanomedicine

2D sandwich sees molecules with clarity: Rice University engineers adapt 2D ‘sandwich’ for surface-enhanced Raman spectroscopy May 15th, 2020

Twisting 2D materials uncovers their superpowers: Researchers have developed a completely new method for twisting atomically thin materials, paving the way for applications of 'twistronics' based on tunable 2D materials May 12th, 2020

Chemistry breakthrough could speed up drug development: Scientists have successfully developed a new technique to reliably grow crystals of organic soluble molecules from nanoscale droplets, unlocking the potential of accelerated new drug development May 8th, 2020

Engineers and scientists develop mobile technology for eye examinations: Novel photonic integrated technology will bring optical coherence tomography from stationary clinical use to mobile use May 7th, 2020

Announcements

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Visualization of functional components to characterize optimal composite electrodes May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Events/Classes

Arrowhead Pharmaceuticals to Participate in Upcoming May 2020 Conferences May 1st, 2020

The National Space Society not holding the International Space Development Conference 2020 in May Due to COVID-19 Concerns March 19th, 2020

Global Summit on Material Science and Nanotechnology March 5th, 2020

Arrowhead Pharmaceuticals to Participate in Upcoming March 2020 Conferences March 3rd, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project