Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Yale researchers develop a way to monitor engineered blood vessels as they grow in patients: New research in the FASEB Journal suggests magnetic resonance imaging allows researchers to study and monitor how new vessels perform while they are 'under construction' in patients

Abstract:
Using magnetic resonance imaging (MRI) and nanoparticle technology, researchers from Yale have devised a way to monitor the growth of laboratory-engineered blood vessels after they have been implanted in patients. This advance represents an important step toward ensuring that blood vessels, and possibly other tissues engineered from a patient's own biological material, are taking hold and working as expected. Until now, there has been no way to monitor the growth and progress of engineered tissues once they were implanted. This research was published in the December 2011 issue of the FASEB Journal (www.fasebj.org).

Yale researchers develop a way to monitor engineered blood vessels as they grow in patients: New research in the FASEB Journal suggests magnetic resonance imaging allows researchers to study and monitor how new vessels perform while they are 'under construction' in patients

Bethesda, MD | Posted on November 30th, 2011

"We hope that the important findings from our study will serve as a valuable tool for physicians and scientists working to better understand the biological mechanisms involved in tissue engineering," said Christopher K. Breuer, M.D., co-author of the study from the Interdepartmental Program in Vascular Biology and Therapeutics at Yale University School of Medicine in New Haven, CT. "Resulting advances will hopefully usher in a new era of personalized medical treatments where replacement vessels are specifically designed for each patient suffering from cardiac anomalies and disease."

To make this advance, scientists used two different groups of cells to make tissue-engineered blood vessels. In the first group, the cells were labeled with the MRI contrast agent. In the second group, the cells were normal and did not have an MRI label. Cells from each group were then used to create separate laboratory-engineered blood vessels, which were implanted into mice. The purpose was to see whether the laboratory-engineered blood vessels made from cells that were labeled with the contrast agent would indeed be visible on MRI and to make sure that the addition of the contrast agent did not negatively affect the cells or the function of the laboratory-engineered vessels. Researchers imaged the mice with MRI and found that it was possible to track the cells labeled with contrast agent, but not possible to track the cells that were not labeled. This suggests that using MRI and cellular contrast agents to study cellular changes in the tissue-engineered blood vessels after they are implanted is an effective way to monitor these types of vessels.

"This is great news for patients with congenital heart defects, who have to undergo tissue grafting, but that's only the tip of the scalpel," said Gerald Weissmann, M.D., Editor-in-Chief of the FASEB Journal. "As we progress toward an era of personalized medicine—where patients' own tissues and cells will be re-engineered into replacement organs and treatments—we will need noninvasive ways to monitor what happens inside the body in real time. This technique fulfills another promise of nanobiology."

####

About Federation of American Societies for Experimental Biology
Receive monthly highlights from the FASEB Journal by e-mail. Sign up at www.faseb.org/fjupdate.aspx. The FASEB Journal (/www.fasebj.org) is published by the Federation of the American Societies for Experimental Biology (FASEB) and celebrates its 25th anniversary in 2011. Over the past quarter century, the journal has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century and is the most cited biology journal worldwide according to the Institute for Scientific Information.

FASEB comprises 24 societies with more than 100,000 members, making it the largest coalition of biomedical research associations in the United States. FASEB enhances the ability of scientists and engineers to improve—through their research—the health, well-being and productivity of all people. FASEB's mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Jamie K. Harrington, Halima Chahboune, Jason M. Criscione, Alice Y. Li, Narutoshi Hibino, Tai Yi, Gustavo A. Villalona, Serge Kobsa, Dane Meijas, Daniel R. Duncan, Lesley Devine, Xenophon Papademetri, Toshiharu Shin'oka, Tarek M. Fahmy, and Christopher K. Breuer.
Determining the fate of seeded cells in venous tissue-engineered vascular grafts using serial MRI. FASEB J. December 2011 25:4150-4161; doi:10.1096/fj.11-185140 ; www.fasebj.org/content/25/12/4150.abstract

For more information, please click here

Contacts:
Cody Mooneyhan

301-634-7104

Copyright © Federation of American Societies for Experimental Biology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Imaging

EPFL Research on the use of AFM based nanoscale IR spectroscopy for the study of single amyloid molecules wins poster competition at Swiss Physics Society meeting July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

SentiMag® Now Available in Australia and New Zealand July 21st, 2014

"Nanocamera" takes pictures at distances smaller than light's own wavelength: How is it possible to record optically encoded information for distances smaller than the wavelength of light? July 17th, 2014

Nanomedicine

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

SentiMag® Now Available in Australia and New Zealand July 21st, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Discoveries

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Announcements

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nanobiotechnology

Production of Non-Virus Nanocarriers with Highest Amount of Gene Delivery July 17th, 2014

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Tiny DNA pyramids enter bacteria easily -- and deliver a deadly payload July 9th, 2014

Artificial cilia: Scientists from Kiel University develop nano-structured transportation system July 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE