Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Drexel's Gogotsi Questions Accuracy of Battery Performance Metrics

Dr. Yury Gogotsi (left) of Drexel and Dr. Patrice Simon authored a piece in Science Magazine questioning current methods of measuring battery efficiency.
Dr. Yury Gogotsi (left) of Drexel and Dr. Patrice Simon authored a piece in Science Magazine questioning current methods of measuring battery efficiency.

Abstract:
Solving the mystery of prematurely dead cell phone and laptop batteries may prove to be a vital step toward creating a sustainable energy grid according to Drexel researcher Dr. Yury Gogotsi. In a piece published in the November 18 edition of Science, Gogotsi, who is the head of the A.J. Drexel Nanotechnology Institute, calls for a new, standardized gauge of performance measurement for energy storage devices that are as small as those used in cell phones to as large as those used in the national energy grid.

Drexel's Gogotsi Questions Accuracy of Battery Performance Metrics

Philadelphia, PA | Posted on November 29th, 2011

Gogotsi is one of the featured experts, along with Bill Gates, tapped by Science to address problems that must be solved en route to the widespread use of renewable energy. His piece, co-authored with Dr. Patrice Simon of the Université Paul Sabatier in Toulouse, France, is entitled "True Performance Metrics in Electrochemical Energy Storage."

"A dramatic expansion of research in the area of electrochemical energy storage has occurred over the past due to an ever increasing variety of handheld electronic devices that we all use," Gogotsi said. "This has expanded use of electrical energy in transportation, and the need to store renewable energy efficiently at the grid level. This process has been accompanied by the chase for glory with the arrival of new materials and technologies that leads to unrealistic expectations for batteries and supercapacitors and may hurt the entire energy storage field."

The main type of energy storage device addressed in the article is the supercapacitor. Supercapacators, which are built from relatively inexpensive natural materials such as carbon, aluminum and polymers, are found in devices, ranging from mobile phones and laptop batteries to trams, buses and solar cells. While supercapacitors tend to store less energy compared to standard lithium-ion batteries, they have the ability to charge and discharge energy more quickly than batteries and can be recharged a near infinite number of times, and operate in a wider temperature range with a high efficiency.

Typically, the performance of both, batteries and supercapacitors, is presented using Ragone plots, graphs that show a relation between the energy density and the power density. For example, a Rangone plot for the battery used in an electric car shows both how far it can travel on a single charge -energy density- and how fast the car can travel -power density. An ideal energy storage device is expected to store plenty of energy and do it quickly.

The issue that Gogotsi and Simon bring to light is the idea that current metrics for grading energy storage devices, including the Ragone plot, may not provide a complete picture of the devices' capability. According to the researchers, other metrics, such as a device's cycle lifetime, energy efficiency, self-discharge, temperature range of operation and cost, must also be reported.

"This paper calls upon the community of scientists and engineers who work on supercapacitors to present data on material performance using metrics beyond the traditional Ragone plot," Simon said. "Although such plots are useful for comparing fully packaged commercial devices, they might predict unrealistic performance for packaged cells from extrapolation of small amounts of materials."

Gogotsi and Simon have a longtime research collaboration, investigating materials for supercapacitors. Their joint work has received global coverage and various awards and distinctions. Funding for the collaboration between Gogotsi and Simon is sponsored by the Partner University Fund (PUF) which supports innovative and sustainable partnerships between French and US institutions of research and higher education.

####

For more information, please click here

Contacts:
Britt Faulstick
News Officer
University Communications

Phone: 215-895-2617
Mobile: 215-796-5161

Copyright © Drexel University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Announcements

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Energy

Nanoparticle technology triples the production of biogas October 23rd, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Graphenea opens US branch October 16th, 2014

NTU develops ultra-fast charging batteries that last 20 years October 14th, 2014

Electrically conductive plastics promising for batteries, solar cells October 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE