Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Drexel's Gogotsi Questions Accuracy of Battery Performance Metrics

Dr. Yury Gogotsi (left) of Drexel and Dr. Patrice Simon authored a piece in Science Magazine questioning current methods of measuring battery efficiency.
Dr. Yury Gogotsi (left) of Drexel and Dr. Patrice Simon authored a piece in Science Magazine questioning current methods of measuring battery efficiency.

Abstract:
Solving the mystery of prematurely dead cell phone and laptop batteries may prove to be a vital step toward creating a sustainable energy grid according to Drexel researcher Dr. Yury Gogotsi. In a piece published in the November 18 edition of Science, Gogotsi, who is the head of the A.J. Drexel Nanotechnology Institute, calls for a new, standardized gauge of performance measurement for energy storage devices that are as small as those used in cell phones to as large as those used in the national energy grid.

Drexel's Gogotsi Questions Accuracy of Battery Performance Metrics

Philadelphia, PA | Posted on November 29th, 2011

Gogotsi is one of the featured experts, along with Bill Gates, tapped by Science to address problems that must be solved en route to the widespread use of renewable energy. His piece, co-authored with Dr. Patrice Simon of the Université Paul Sabatier in Toulouse, France, is entitled "True Performance Metrics in Electrochemical Energy Storage."

"A dramatic expansion of research in the area of electrochemical energy storage has occurred over the past due to an ever increasing variety of handheld electronic devices that we all use," Gogotsi said. "This has expanded use of electrical energy in transportation, and the need to store renewable energy efficiently at the grid level. This process has been accompanied by the chase for glory with the arrival of new materials and technologies that leads to unrealistic expectations for batteries and supercapacitors and may hurt the entire energy storage field."

The main type of energy storage device addressed in the article is the supercapacitor. Supercapacators, which are built from relatively inexpensive natural materials such as carbon, aluminum and polymers, are found in devices, ranging from mobile phones and laptop batteries to trams, buses and solar cells. While supercapacitors tend to store less energy compared to standard lithium-ion batteries, they have the ability to charge and discharge energy more quickly than batteries and can be recharged a near infinite number of times, and operate in a wider temperature range with a high efficiency.

Typically, the performance of both, batteries and supercapacitors, is presented using Ragone plots, graphs that show a relation between the energy density and the power density. For example, a Rangone plot for the battery used in an electric car shows both how far it can travel on a single charge -energy density- and how fast the car can travel -power density. An ideal energy storage device is expected to store plenty of energy and do it quickly.

The issue that Gogotsi and Simon bring to light is the idea that current metrics for grading energy storage devices, including the Ragone plot, may not provide a complete picture of the devices' capability. According to the researchers, other metrics, such as a device's cycle lifetime, energy efficiency, self-discharge, temperature range of operation and cost, must also be reported.

"This paper calls upon the community of scientists and engineers who work on supercapacitors to present data on material performance using metrics beyond the traditional Ragone plot," Simon said. "Although such plots are useful for comparing fully packaged commercial devices, they might predict unrealistic performance for packaged cells from extrapolation of small amounts of materials."

Gogotsi and Simon have a longtime research collaboration, investigating materials for supercapacitors. Their joint work has received global coverage and various awards and distinctions. Funding for the collaboration between Gogotsi and Simon is sponsored by the Partner University Fund (PUF) which supports innovative and sustainable partnerships between French and US institutions of research and higher education.

####

For more information, please click here

Contacts:
Britt Faulstick
News Officer
University Communications

Phone: 215-895-2617
Mobile: 215-796-5161

Copyright © Drexel University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project