Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Honey bee mystery protein is a freight train for health and lifespan

This is an illustration of the "locomotive" part of the vitellogenin protein in honey bees.

Credit: Heli Havukainen
This is an illustration of the "locomotive" part of the vitellogenin protein in honey bees.

Credit: Heli Havukainen

Abstract:
Why are bee colonies worldwide suffering mysterious deaths? A unique study describes a single bee protein that can promote bee health and solve a major economic challenge.

Honey bee mystery protein is a freight train for health and lifespan

Norway | Posted on November 29th, 2011

Honey bees are the most effective pollinators of many agricultural crops and vitally important to food production.

Honey bee health is a topic of considerable concern due to massive deaths of bee colonies in the USA and Europe. Recently, the European Union reacted by promising more resources for honey bee research, estimating European pollination to an economic value of EUR 22 billion.

"Detailed studies on the molecules that keep bees healthy are extremely important to the food industry as well as the global provision of food," said dr. Heli Havukainen, who defended her PhD thesis at the Norwegian University of Life Sciences (UMB) on November 25. Her study of honey bees is a collaboration between UMB and the University of Bergen (UiB), Norway.

More protein = better health and longer life

One of these molecules is a protein called vitellogenin. "Simply put, the more vitellogenin in bees, the longer they live. Vitellogenin also guides bees to do different social tasks, such caregiving or foraging. It also supports the immune function and is an antioxidant that promotes stress resistance. In my research, I set out to find out how this molecule is shaped and how it behaves on a nano-scale. This provides us with more knowledge about how vitellogenin is good for honey bees," Havukainen said.

Like a freight train

Under the supervision of Professor Gro Amdam (UMB and Arizona State University) and Associate Professor ōyvind Halskau (UiB), Havukainen discovered that vitellogenin can be described as a freight train consisting of a locomotive and a carriage. The protein carries fat as its cargo, which it picks up in the bees' belly-fat cells - the main station. The vitellogenin "train" travels in the bee's blood and delivers the fat cargo at different local stops or stations.

"I found out that, instead of starting the train journey from the fat cell main station, some vitellogenin molecules are divided in two, so the locomotive is separated from its cargo. The cargo cannot move without a locomotive and it stays in the fat cells, while the locomotive disappears. We soon realised that this is a typical behaviour for the vitellogenin molecule," Havukainen said.

Prior to this study, scientists believed vitellogenin to be one entity, like a cargo ship, unable to separate from its cargo. Therefore, Havukainen's new discovery is a big step forward for research that aims to keep bees healthy and long lived.

"We figured out that vitellogenin can drop its fat cargo as a reaction to changing chemical conditions. How this "drop" occurs and which factor makes the locomotive move and leave its cargo are important questions in the protein world, and probably equally important to the bee," Havukainen said.

What's up with the train hitch?

The research group believes that the separation of vitellogenin in two parts is a key to understanding how the protein works. They are now in search of the factor that breaks the fragile connection, or the train hitch of the protein, and lets the locomotive go.

"My discovery is that vitellogenin is not one entity. It consists of two functional parts. Now, I want to stop the separation process, so the locomotive and fat cargo are always together. This will help us figure out why the locomotive sometimes ditches its cargo and travels around on its own, and what the consequences are for the bees. This way, we can learn how vitellogenin affects social behaviour, immunity and stress resistance, and ultimately global food production and provision, Havukainen said.

####

For more information, please click here

Contacts:
Torunn Moe

47-416-79179

Copyright © Norwegian University of Life Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Kalam: versatility personified August 1st, 2015

Govt.-Legislation/Regulation/Funding/Policy

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Kalam: versatility personified August 1st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universitšt Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Discoveries

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Shaping the hilly landscapes of a semi-conductor nanoworld August 1st, 2015

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Announcements

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Food/Agriculture/Supplements

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

QuantumSphere Completes State-of-the-Art Nanocatalyst Production Facility: Now Positioned to Capitalize on Commercial Validation and JDA with Casale, SA July 25th, 2015

3D-printed 'smart cap' uses electronics to sense spoiled food July 20th, 2015

Research partnerships

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Stretching the limits on conducting wires July 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project