Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Honey bee mystery protein is a freight train for health and lifespan

This is an illustration of the "locomotive" part of the vitellogenin protein in honey bees.

Credit: Heli Havukainen
This is an illustration of the "locomotive" part of the vitellogenin protein in honey bees.

Credit: Heli Havukainen

Abstract:
Why are bee colonies worldwide suffering mysterious deaths? A unique study describes a single bee protein that can promote bee health and solve a major economic challenge.

Honey bee mystery protein is a freight train for health and lifespan

Norway | Posted on November 29th, 2011

Honey bees are the most effective pollinators of many agricultural crops and vitally important to food production.

Honey bee health is a topic of considerable concern due to massive deaths of bee colonies in the USA and Europe. Recently, the European Union reacted by promising more resources for honey bee research, estimating European pollination to an economic value of EUR 22 billion.

"Detailed studies on the molecules that keep bees healthy are extremely important to the food industry as well as the global provision of food," said dr. Heli Havukainen, who defended her PhD thesis at the Norwegian University of Life Sciences (UMB) on November 25. Her study of honey bees is a collaboration between UMB and the University of Bergen (UiB), Norway.

More protein = better health and longer life

One of these molecules is a protein called vitellogenin. "Simply put, the more vitellogenin in bees, the longer they live. Vitellogenin also guides bees to do different social tasks, such caregiving or foraging. It also supports the immune function and is an antioxidant that promotes stress resistance. In my research, I set out to find out how this molecule is shaped and how it behaves on a nano-scale. This provides us with more knowledge about how vitellogenin is good for honey bees," Havukainen said.

Like a freight train

Under the supervision of Professor Gro Amdam (UMB and Arizona State University) and Associate Professor Øyvind Halskau (UiB), Havukainen discovered that vitellogenin can be described as a freight train consisting of a locomotive and a carriage. The protein carries fat as its cargo, which it picks up in the bees' belly-fat cells - the main station. The vitellogenin "train" travels in the bee's blood and delivers the fat cargo at different local stops or stations.

"I found out that, instead of starting the train journey from the fat cell main station, some vitellogenin molecules are divided in two, so the locomotive is separated from its cargo. The cargo cannot move without a locomotive and it stays in the fat cells, while the locomotive disappears. We soon realised that this is a typical behaviour for the vitellogenin molecule," Havukainen said.

Prior to this study, scientists believed vitellogenin to be one entity, like a cargo ship, unable to separate from its cargo. Therefore, Havukainen's new discovery is a big step forward for research that aims to keep bees healthy and long lived.

"We figured out that vitellogenin can drop its fat cargo as a reaction to changing chemical conditions. How this "drop" occurs and which factor makes the locomotive move and leave its cargo are important questions in the protein world, and probably equally important to the bee," Havukainen said.

What's up with the train hitch?

The research group believes that the separation of vitellogenin in two parts is a key to understanding how the protein works. They are now in search of the factor that breaks the fragile connection, or the train hitch of the protein, and lets the locomotive go.

"My discovery is that vitellogenin is not one entity. It consists of two functional parts. Now, I want to stop the separation process, so the locomotive and fat cargo are always together. This will help us figure out why the locomotive sometimes ditches its cargo and travels around on its own, and what the consequences are for the bees. This way, we can learn how vitellogenin affects social behaviour, immunity and stress resistance, and ultimately global food production and provision, Havukainen said.

####

For more information, please click here

Contacts:
Torunn Moe

47-416-79179

Copyright © Norwegian University of Life Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Discoveries

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Announcements

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Food/Agriculture/Supplements

Common nanoparticle has subtle effects on oxidative stress genes May 11th, 2016

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Arrowhead Pharmaceuticals Presents Preclinical Data on Renal Cell Carcinoma Program at AACR 2016 April 19th, 2016

'Honeycomb' of nanotubes could boost genetic engineering April 7th, 2016

Research partnerships

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic