Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Graphene earns its stripes: New nanoscale electronic state discovered on graphene sheets

These are electronic stripes, called "charge density waves," on the surface of a graphitic superconductor.

Credit: K. A. Rahnejat
These are electronic stripes, called "charge density waves," on the surface of a graphitic superconductor.

Credit: K. A. Rahnejat

Abstract:
Researchers from the London Centre for Nanotechnology (LCN) have discovered electronic stripes, called 'charge density waves', on the surface of the graphene sheets that make up a graphitic superconductor. This is the first time these stripes have been seen on graphene, and the finding is likely to have profound implications for the exploitation of this recently discovered material, which scientists believe will play a key role in the future of nanotechnology. The discovery is reported in Nature Communications, 29th November.

Graphene earns its stripes: New nanoscale electronic state discovered on graphene sheets

London, UK | Posted on November 29th, 2011

Graphene is a material made up of a single sheet of carbon atoms just one atom thick, and is found in the marks made by a graphite pencil. Graphene has remarkable physical properties and therefore has great technological potential, for example, in transparent electrodes for flat screen TVs, in fast energy-efficient transistors, and in ultra-strong composite materials. Scientists are now devoting huge efforts to understand and control the properties of this material.

The LCN team donated extra electrons to a graphene surface by sliding calcium metal atoms underneath it. One would normally expect these additional electrons to spread out evenly on the graphene surface, just as oil spreads out on water. But by using an instrument known as a scanning tunneling microscope, which can image individual atoms, the researchers have found that the extra electrons arrange themselves spontaneously into nanometer-scale stripes. This unexpected behavior demonstrates that the electrons can have a life of their own which is not connected directly to the underlying atoms. The results inspire many new directions for both science and technology. For example, they suggest a new method for manipulating and encoding information, where binary zeros and ones correspond to stripes running from north to south and running from east to west respectively.

This work is part of an ongoing multi-disciplinary research effort into graphene at the LCN and follows on from the original discovery of superconductivity in the graphite superconductor CaC6 by Weller at al. published in Nature Physics, doi:10.1038/nphys0010.

Professor Jan Zaanen of Leiden University and winner of the prestigious Spinoza prize for, among other things, his role as proponent of the stripe concept for atomically thin materials, commented: "This discovery is another important step towards demonstrating the ubiquity of stripes, and the fact that they appear in the world's simplest host - the two-dimensional network of carbon atoms that is graphene - means that more great science and applications are not far behind."

Notes to Editors:

The paper
'Charge density waves in the graphene sheets of the superconductor CaC6' appears in Nature Communications on 29th November 2001. DOI: 10.1038/ncomms1574

####

About University College London
The London Centre for Nanotechnology, is a UK-based, multidisciplinary research centre forming the bridge between the physical and biomedical sciences. It was conceived from the outset with a management structure allowing for a clear focus on scientific excellence, exploitation and commercialisation. It brings together two world leaders in nanotechnology, namely University College London and Imperial College London, in a unique operating model that accesses the combined skills of multiple departments, including medicine, chemistry, physics, electronic and electrical engineering, biochemical engineering, materials and earth sciences, and two leading technology transfer offices. Website: www.london-nano.com

For more information, please click here

Contacts:
Joanna Rooke

44-207-679-9950

Copyright © University College London

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Graphene/ Graphite

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Nanoribbons in solutions mimic nature: Rice University scientists test graphene ribbons' abilities to integrate with biological systems August 15th, 2016

Lithium-ion batteries: Capacity might be increased by 6 times August 9th, 2016

Swapping substrates improves edges of graphene nanoribbons: Using inert boron nitride instead of silica creates precise zigzag edges in monolayer graphene August 2nd, 2016

Chip Technology

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Hexagonal boron nitride semiconductors enable cost-effective detection of neutron signals: Texas Tech University researchers demonstrate hexagonal boron nitride semiconductors as a cost-effective alternative for inspecting overseas cargo containers entering US ports August 17th, 2016

Enhanced electron doping on iron superconductors discovered: IBS Centre for Correlated Electron Systems revises existing theories by raising the temperature for superconductivity August 17th, 2016

Memory Technology

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

New metamaterials can change properties with a flick of a light-switch: Material can lead to new optical devices August 3rd, 2016

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

Discoveries

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Announcements

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic