Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nature notices PKU's new solar battery in carbon nanotubes

Abstract:
Peking University (PKU) Professor Peng Lianmao published Research Efficient Photovoltage Multiplication in Carbon Nanotubes on Nature Photonics (2011, 5, PP.672-676), with PhD candidates from PKU School of Electronics Engineering and Computer Science, Yang Leijing and Wang Shengfu, as co-writers.

Nature notices PKU's new solar battery in carbon nanotubes

Beijing, China | Posted on November 24th, 2011

Nature Photonics is one of the periodicals belonging to the renowned journal Nature. The research paper contains major breakthrough in the study of nanoelectronic applications. It at the same time represents the new progress in the field of nanoelectronic applications made by Professor Peng Lianmao's team.

With the background that natural resource is more and more meager, solar power has many unsurpassable advantages as an alternative energy source. At present, global researches in solar photovoltage mainly focus on the study of photovoltaic devices based on new nanomaterials.

Carbon nanotubes are direct-bandgap materials that are not only useful for nanoelectronic applications, but also have the potential to make a significant impact on the next generation of photovoltaic technology. A semiconducting single-walled carbon nanotube (SWCNT) has an unusual band structure, as a result of which high-efficiency carrier multiplication effects have been predicted and observed, and films of SWCNTs with absorption close to 100% have been reported. Other important features for photovoltaic applications include high mobility and the availability of ohmic contacts for both electrons and holes. However, the photovoltage generated from a typical semiconducting SWCNT is less than 0.2V, which is too small for most practical photovoltaic applications. Given this background, the researchers successfully showed how this value was readily multiplied by using virtual contacts at the carbon nanotube, which turned to be an important and challenging job.

Professor Peng and his team worked out an approach, the key to which was the introduction of a local virtual contact to the CNT. This contact is virtual in the sense that it is not intended to be connected to the external circuit. In one example, more than 1.0V is generated from a 10-mm-long carbon nanotube with a single-cell photovoltage of 0.2V. This work was realized based on the forward researches conducted by the same team.

In 2008, the research group put forward a method to form carbon nanotube (CNT) diodes using asymmetrically contacts between electrodes. This research finding was published on Advanced Materials (2008, 20, 3258). On this basis, using almost the same but improved methods, the team invented the first carbon tube infrared light-emitting diode (LED), Nano Letters (2011, 11, 23) reported.

The study was supported by the China's National Basic Research Program, and funded by the National Natural Science Fund Committee (NNSFC).

Written by: Jiang Zhaohui
Edited by: Arthars

####

For more information, please click here

Copyright © Peking University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Nanotubes/Buckyballs

Tesla NanoCoatings Increasing Use of SouthWest NanoTechnologies Carbon Nanotubes (CNTs) for its Infrastructure Coatings and Paints: High Quality SMW™ Specialty Multi-wall Carbon Nanotubes Incorporated into Teslan®-brand coatings used by Transportation, Oil and Gas Companies November 19th, 2014

Graphene/nanotube hybrid benefits flexible solar cells: Rice University labs create novel electrode for dye-sensitized cells November 17th, 2014

SouthWest NanoTechnologies to Demonstrate 3D Capacitive Touch Sensor Featuring Transparent, Thermoformed Carbon Nanotube Ink at Printed Electronics USA 2014 (Booth J25) -- “Conductive and Semiconducting Single-Wall Carbon Nanotube Inks” will be Topic of Company Presentation November 10th, 2014

Neural Canals Produced in Iran for Recovery of Sciatica Nerve November 8th, 2014

Discoveries

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Announcements

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Energy

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Blu-ray disc can be used to improve solar cell performance: Data storage pattern transferred to solar cell increases light absorption November 25th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

OCSiAl Builds Worldwide Partnership Network November 12th, 2014

Drexel Engineers Improve Strength, Flexibility of Atom-Thick Films November 11th, 2014

A billion holes can make a battery November 10th, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Solar/Photovoltaic

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Blu-ray disc can be used to improve solar cell performance: Data storage pattern transferred to solar cell increases light absorption November 25th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Eight19 secures Ł1m funding: Investment to develop production technology, and expand commercial activities for organic photovoltaics November 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE