Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > mPhase Explains Key Technology Features of Smart Surface Technology

Figure 1. Smart material surface made from silicon wafer. Water droplets repelled from going through the pores of the silicon membrane due to superhydrophobic properties of the silicon surface.
Figure 1. Smart material surface made from silicon wafer. Water droplets repelled from going through the pores of the silicon membrane due to superhydrophobic properties of the silicon surface.

Abstract:
mPhase Technologies, Inc. (OTCBB: XDSL) has developed a technology that exploits the phenomenon of electrowetting or the ability to electronically manipulate the way liquids behave when in contact with a solid or porous surface. Liquids such as water will bead up on a surface that is superhydrophobic, but can be made to move or spread out by electrowetting. The same is true for an organic liquid if the surface is superlyophobic.

mPhase Explains Key Technology Features of Smart Surface Technology

Little Falls, NJ | Posted on November 23rd, 2011

mPhase is pursuing this emerging technology, which is now being actively researched at a number of universities who are publicizing their work on electrowetting, superhydrophobicity and superlyophobicity.

The technology is being used to create so-called "smart" structures on metal, ceramic, polymer surfaces and other advanced materials that can resist getting dirty, fogging up, or forming ice. They also can be used for displays, lenses and other applications.

To date mPhase has been concentrating on smart battery applications by exploiting this same electrowetting phenomenon in their Smart NanoBattery by manipulating the liquid electrolyte via a proprietary porous silicon structure shown in Figure 1.

The breakthrough has enabled a unique reserve-style battery architecture that has proven adaptable to a wide range of chemistries, with the initial development based on zinc manganese dioxide (Zn/MnO2) chemistries, similar to the typical alkaline battery used in a flashlight or TV remote control, as well as development focused on higher-energy density, lithium manganese dioxide (Li/MnO2), chemistries found in laptops, cell phones and digital cameras. Future applications that can be implemented within the same architecture include rechargeable batteries based on lithium-based chemistries.

These correlate to first launching and proving out the technology for a reserve battery, then a primary cell with the Zn/MnO2 or Li/MnO2 chemistries, and later a secondary (rechargeable) battery.

At that point, if completed the family of mPhase Batteries will be (reserve, primary and secondary) potentially serving a wide range of applications.

####

About mPhase Technologies, Inc.
mPhase Technologies is introducing a revolutionary Smart Surface technology enabled by breakthroughs in nanotechnology, MEMS processing and micro fluidics. Our Smart Surface technology has potential applications within drug delivery systems, lab-on-a-chip analytic systems, self-cleaning systems, liquid and chemical sensor systems, and filtration systems. mPhase has pioneered its first Smart Surface enabled product, the mPhase SmartNanoBattery.

In addition to the Smart Surface technology, mPhase recently introduced its first product, the mPower Emergency Illuminator, an award-winning product designed by Porsche Design Studio and sold via the mPower website: www.mpowertech.com. More information about the company can be found at www.mPhaseTech.com.

Forward-Looking Statements

As a cautionary note to investors, certain matters discussed in this press release may be forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Such matters involve risks and uncertainties that may cause actual results to differ materially, including the following: changes in economic conditions; general competitive factors; acceptance of the Company's products in the market; the Company's success in technology and product development; the Company's ability to execute its business model and strategic plans; and all the risks and related information described from time to time in the Company's SEC filings, including the financial statements and related information contained in the Company's SEC Filing. mPhase assumes no obligation to update the information in this release

For more information, please click here

Copyright © Marketwire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Lab-on-a-chip

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Microfluidics/Nanofluidics

Light in a spin: Researchers demonstrate angular accelerating light April 15th, 2015

Device extracts rare tumor cells using sound: Microfluidic chip developed by CMU President Suresh and collaborators uses acoustic waves to separate circulating tumor cells from blood cells April 7th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Dolomite’s microfluidics technology ideal for B cell encapsulation March 24th, 2015

MEMS

Phonons, arise! Small electric voltage alters conductivity in key materials April 22nd, 2015

Iranian Scientists Evaluate Dynamic Interaction between 2 Carbon Nanotubes April 14th, 2015

ASIC Development for MEMS Applications: A Platform Approach March 25th, 2015

STMicroelectronics Executive Vice-President Benedetto Vigna Awarded IEEE Frederik Philips Award March 12th, 2015

Sensors

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Materials/Metamaterials

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Announcements

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Phonons, arise! Small electric voltage alters conductivity in key materials April 22nd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project