Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > mPhase Explains Key Technology Features of Smart Surface Technology

Figure 1. Smart material surface made from silicon wafer. Water droplets repelled from going through the pores of the silicon membrane due to superhydrophobic properties of the silicon surface.
Figure 1. Smart material surface made from silicon wafer. Water droplets repelled from going through the pores of the silicon membrane due to superhydrophobic properties of the silicon surface.

Abstract:
mPhase Technologies, Inc. (OTCBB: XDSL) has developed a technology that exploits the phenomenon of electrowetting or the ability to electronically manipulate the way liquids behave when in contact with a solid or porous surface. Liquids such as water will bead up on a surface that is superhydrophobic, but can be made to move or spread out by electrowetting. The same is true for an organic liquid if the surface is superlyophobic.

mPhase Explains Key Technology Features of Smart Surface Technology

Little Falls, NJ | Posted on November 23rd, 2011

mPhase is pursuing this emerging technology, which is now being actively researched at a number of universities who are publicizing their work on electrowetting, superhydrophobicity and superlyophobicity.

The technology is being used to create so-called "smart" structures on metal, ceramic, polymer surfaces and other advanced materials that can resist getting dirty, fogging up, or forming ice. They also can be used for displays, lenses and other applications.

To date mPhase has been concentrating on smart battery applications by exploiting this same electrowetting phenomenon in their Smart NanoBattery by manipulating the liquid electrolyte via a proprietary porous silicon structure shown in Figure 1.

The breakthrough has enabled a unique reserve-style battery architecture that has proven adaptable to a wide range of chemistries, with the initial development based on zinc manganese dioxide (Zn/MnO2) chemistries, similar to the typical alkaline battery used in a flashlight or TV remote control, as well as development focused on higher-energy density, lithium manganese dioxide (Li/MnO2), chemistries found in laptops, cell phones and digital cameras. Future applications that can be implemented within the same architecture include rechargeable batteries based on lithium-based chemistries.

These correlate to first launching and proving out the technology for a reserve battery, then a primary cell with the Zn/MnO2 or Li/MnO2 chemistries, and later a secondary (rechargeable) battery.

At that point, if completed the family of mPhase Batteries will be (reserve, primary and secondary) potentially serving a wide range of applications.

####

About mPhase Technologies, Inc.
mPhase Technologies is introducing a revolutionary Smart Surface technology enabled by breakthroughs in nanotechnology, MEMS processing and micro fluidics. Our Smart Surface technology has potential applications within drug delivery systems, lab-on-a-chip analytic systems, self-cleaning systems, liquid and chemical sensor systems, and filtration systems. mPhase has pioneered its first Smart Surface enabled product, the mPhase SmartNanoBattery.

In addition to the Smart Surface technology, mPhase recently introduced its first product, the mPower Emergency Illuminator, an award-winning product designed by Porsche Design Studio and sold via the mPower website: www.mpowertech.com. More information about the company can be found at www.mPhaseTech.com.

Forward-Looking Statements

As a cautionary note to investors, certain matters discussed in this press release may be forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Such matters involve risks and uncertainties that may cause actual results to differ materially, including the following: changes in economic conditions; general competitive factors; acceptance of the Company's products in the market; the Company's success in technology and product development; the Company's ability to execute its business model and strategic plans; and all the risks and related information described from time to time in the Company's SEC filings, including the financial statements and related information contained in the Company's SEC Filing. mPhase assumes no obligation to update the information in this release

For more information, please click here

Copyright © Marketwire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stiffness matters February 23rd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Microfluidics/Nanofluidics

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Nanotubes go with the flow to penetrate brain tissue: Rice University scientists, engineers develop microfluidic devices, microelectrodes for gentle implantation December 19th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Lab-on-a-chip

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

New graphene-based system could help us see electrical signaling in heart and nerve cells: Berkeley-Stanford team creates a system to visualize faint electric fields December 19th, 2016

MEMS

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

First Capacitive Transducer with 13nm Gap July 27th, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Sensors

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Leti Chief Scientist Barbara De Salvo Will Help Kick Off ISSCC 2018 with Opening-Day Keynote: In Addition, Leti Scientists Will Present and Demo New Technology for Piezoelectric Energy Harvesting February 8th, 2018

Engineers develop flexible, water-repellent graphene circuits for washable electronics January 24th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Materials/Metamaterials

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Atomic Flaws Create Surprising, High-Efficiency UV LED Materials: Subtle surface defects increase UV light emission in greener, more cost-effective LED and catalyst materials February 8th, 2018

Announcements

Stiffness matters February 23rd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Leti Chief Scientist Barbara De Salvo Will Help Kick Off ISSCC 2018 with Opening-Day Keynote: In Addition, Leti Scientists Will Present and Demo New Technology for Piezoelectric Energy Harvesting February 8th, 2018

Round-the-clock power from smart bowties February 5th, 2018

NTU scientists create customizable, fabric-like power source for wearable electronics January 30th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project