Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanowrinkles, nanofolds yield strange hidden channels

Researchers at Brown University and in Korea used focused ion beams to extract a cross-section of compressed gold nanofilm. When tips of regular, neighboring folds touched, nanopipes were created beneath the surface.

Credit: Kyung-Suk Kim lab, Brown University
Researchers at Brown University and in Korea used focused ion beams to extract a cross-section of compressed gold nanofilm. When tips of regular, neighboring folds touched, nanopipes were created beneath the surface.

Credit: Kyung-Suk Kim lab, Brown University

Abstract:
Wrinkles and folds are ubiquitous. They occur in furrowed brows, planetary topology, the surface of the human brain, even the bottom of a gecko's foot. In many cases, they are nature's ingenious way of packing more surface area into a limited space. Scientists, mimicking nature, have long sought to manipulate surfaces to create wrinkles and folds to make smaller, more flexible electronic devices, fluid-carrying nanochannels or even printable cell phones and computers.

Nanowrinkles, nanofolds yield strange hidden channels

Providence, RI | Posted on November 23rd, 2011

But to attain those technology-bending feats, scientists must fully understand the profile and performance of wrinkles and folds at the nanoscale, dimensions 1/50,000th the thickness of a human hair. In a series of observations and experiments, engineers at Brown University and in Korea have discovered unusual properties in wrinkles and folds at the nanoscale. The researchers report that wrinkles created on super-thin films have hidden long waves that lengthen even when the film is compressed. The team also discovered that when folds are formed in such films, closed nanochannels appear below the surface, like thousands of super-tiny pipes.

"Wrinkles are everywhere in science," said Kyung-Suk Kim, professor of engineering at Brown and corresponding author of the paper published in the journal Proceedings of the Royal Society A. "But they hold certain secrets. With this study, we have found mathematically how the wrinkle spacings of a thin sheet are determined on a largely deformed soft substrate and how the wrinkles evolve into regular folds."

Wrinkles are made when a thin stiff sheet is buckled on a soft foundation or in a soft surrounding. They are precursors of regular folds: When the sheet is compressed enough, the wrinkles are so closely spaced that they form folds. The folds are interesting to manufacturers, because they can fit a large surface area of a sheet in a finite space.

Kim and his team laid gold nanogranular film sheets ranging from 20 to 80 nanometers thick on a rubbery substrate commonly used in the microelectronics industry. The researchers compressed the film, creating wrinkles and examined their properties. As in previous studies, they saw primary wrinkles with short periodicities, the distance between individual wrinkles' peaks or valleys. But Kim and his colleagues discovered a second type of wrinkle, with a much longer periodicity than the primary wrinkles — like a hidden long wave. As the researchers compressed the gold nanogranular film, the primary wrinkles' periodicity decreased, as expected. But the periodicity between the hidden long waves, which the group labeled secondary wrinkles, lengthened.

"We thought that was strange," Kim said.

It got even stranger when the group formed folds in the gold nanogranular sheets. On the surface, everything appeared normal. The folds were created as the peaks of neighboring wrinkles got so close that they touched. But the research team calculated that those folds, if elongated, did not match the length of the film before it had been compressed. A piece of the original film surface was not accounted for, "as if it had been buried," Kim said.

Indeed, it had been, as nano-size closed channels. Previous researchers, using atomic force microscopy that scans the film's surface, had been unable to see the buried channels. Kim's group turned to focused ion beams to extract a cross-section of the film. There, below the surface, were rows of closed channels, about 50 to a few 100 nanometers in diameter. "They were hidden," Kim said. "We were the first ones to cut (the film) and see that there are channels underneath."

The enclosed nano channels are important because they could be used to funnel liquids, from drugs on patches to treat diseases or infections, to clean water and energy harvesting, like a microscopic hydraulic pump.

Contributing authors include Jeong-Yun Sun and Kyu Hwan Oh from Seoul National University; Myoung-Woon Moon from the Korea Institute of Science and Technology; and Shuman Xia, a researcher at Brown and now at the Georgia Institute of Technology. The National Science Foundation, the Korea Institute of Science and Technology, the Ministry of Knowledge Economy of Korea, and the Ministry of Education, Science, and Technology of Korea supported the research.

####

For more information, please click here

Contacts:
Richard Lewis

401-863-3766

Copyright © Brown University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanofiltration Membrane Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanozirconia Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Self-Healing Nano Anti-rust Coatings Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Flexible Electronics

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Stretching the limits on conducting wires July 25th, 2015

Microfluidics/Nanofluidics

Smart hydrogel coating creates 'stick-slip' control of capillary action July 27th, 2015

Miniature Technology, Large-Scale Impact: Winner of the 2015 Lindros Award for translational medicine, Kjeld Janssen is pushing the boundaries of the emerging lab-on-a-chip technology July 7th, 2015

Chip Technology

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Discoveries

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Announcements

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanocellulose Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Energy

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Water

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Nanosorbents Reduce Amount of Heavy Metals in Petrochemical Wastewater July 23rd, 2015

Global Nano-water Machine Industry 2015 Market Research Report July 23rd, 2015

Research partnerships

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Stretching the limits on conducting wires July 25th, 2015

Printing/Lithography/Inkjet/Inks

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

2015 Bulk Graphene Pricing Webinar:The Graphene Council to Host Webinar in Collaboration with Fullerex July 15th, 2015

Leti and EVG Launch INSPIRE, a Lithography Program Aimed At Demonstrating Benefits of Nano-imprint Technology July 15th, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project