Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UO chemists develop liquid-based hydrogen storage material

Abstract:
University of Oregon chemists have developed a boron-nitrogen-based liquid-phase storage material for hydrogen that works safely at room temperature and is both air- and moisture-stable -- an accomplishment that offers a possible route through current storage and transportation obstacles.

UO chemists develop liquid-based hydrogen storage material

Eugene, OR | Posted on November 22nd, 2011

Reporting in a paper placed online ahead of publication in the Journal of the American Chemical Society, a team of four UO scientists describes the development of a cyclic amine borane-based platform called BN-methylcyclopentane. In addition to its temperature and stability properties, it also features hydrogen desorption, without any phase change, that is clean, fast and controllable. It uses readily available iron chloride as a catalyst for desorption, and allows for recycling of spent fuel into a charged state.

The big challenges to move this storage platform forward, researchers cautioned, are the needs to increase hydrogen yield and develop a more energy efficient regeneration mechanism.

"In addition to renewable hydrogen production, the development of hydrogen storage technologies continues to be an important task toward establishing a hydrogen-based energy infrastructure," said Shih-Yuan Liu, professor of chemistry and researcher in the UO Material Sciences Institute.

The U.S. Department of Energy, which funded the research, is shooting to develop a viable liquid or solid carrier for hydrogen fuel by 2017. The new UO approach differs from many other technologies being studied in that it is liquid-based rather than solid, which, Liu says, would ease the possible transition from a gasoline to a hydrogen infrastructure.

"The field of materials-based hydrogen storage has been dominated by the study of solid-phase materials such as metal hydrides, sorbent materials and ammonia borane," Liu said. "The availability of a liquid-phase hydrogen storage material could represent a practical hydrogen storage option for mobile and carrier applications that takes advantage of the currently prevalent liquid-based fuel infrastructure."

The key is in the chemistry. Liu's team originally discovered six-membered cyclic amine borane materials that readily trimerize -- form a larger desired molecule -- with the release of hydrogen. These initial materials, however, were solids. By tweaking the structure, including reducing the ring size from 6- to a 5-membered ring, the group succeeded in creating a liquid version that has low vapor pressures and does not change its liquid property upon hydrogen release.

Initially, Liu said, the new platform could be more readily adopted for use in portable fuel cell-powered devices.

Co-authors on the paper were doctoral students Wei Luo and Patrick G. Campbell, and Lev N. Zakharov of the Center for Advanced Materials Characterization in Oregon (CAMCOR).

####

About University of Oregon
The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

For more information, please click here

Contacts:
Jim Barlow
director of science and research communications
541-346-3481


Source:
Shih-Yuan Liu
assistant professor of chemistry
541-346-5573

Copyright © University of Oregon

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Chemistry

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Researchers produced nitrogen doped bimodal cellular structure activated carbon December 29th, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

Discoveries

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Announcements

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Energy

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Fuel Cells

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

It's basic: Alternative fuel cell technology reduces cost: Study sets performance targets for metal-free fuel cell membrane December 13th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Water vapor sets some oxides aflutter: Newly discovered phenomenon could affect materials in batteries and water-splitting devices October 3rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project