Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UO chemists develop liquid-based hydrogen storage material

Abstract:
University of Oregon chemists have developed a boron-nitrogen-based liquid-phase storage material for hydrogen that works safely at room temperature and is both air- and moisture-stable -- an accomplishment that offers a possible route through current storage and transportation obstacles.

UO chemists develop liquid-based hydrogen storage material

Eugene, OR | Posted on November 22nd, 2011

Reporting in a paper placed online ahead of publication in the Journal of the American Chemical Society, a team of four UO scientists describes the development of a cyclic amine borane-based platform called BN-methylcyclopentane. In addition to its temperature and stability properties, it also features hydrogen desorption, without any phase change, that is clean, fast and controllable. It uses readily available iron chloride as a catalyst for desorption, and allows for recycling of spent fuel into a charged state.

The big challenges to move this storage platform forward, researchers cautioned, are the needs to increase hydrogen yield and develop a more energy efficient regeneration mechanism.

"In addition to renewable hydrogen production, the development of hydrogen storage technologies continues to be an important task toward establishing a hydrogen-based energy infrastructure," said Shih-Yuan Liu, professor of chemistry and researcher in the UO Material Sciences Institute.

The U.S. Department of Energy, which funded the research, is shooting to develop a viable liquid or solid carrier for hydrogen fuel by 2017. The new UO approach differs from many other technologies being studied in that it is liquid-based rather than solid, which, Liu says, would ease the possible transition from a gasoline to a hydrogen infrastructure.

"The field of materials-based hydrogen storage has been dominated by the study of solid-phase materials such as metal hydrides, sorbent materials and ammonia borane," Liu said. "The availability of a liquid-phase hydrogen storage material could represent a practical hydrogen storage option for mobile and carrier applications that takes advantage of the currently prevalent liquid-based fuel infrastructure."

The key is in the chemistry. Liu's team originally discovered six-membered cyclic amine borane materials that readily trimerize -- form a larger desired molecule -- with the release of hydrogen. These initial materials, however, were solids. By tweaking the structure, including reducing the ring size from 6- to a 5-membered ring, the group succeeded in creating a liquid version that has low vapor pressures and does not change its liquid property upon hydrogen release.

Initially, Liu said, the new platform could be more readily adopted for use in portable fuel cell-powered devices.

Co-authors on the paper were doctoral students Wei Luo and Patrick G. Campbell, and Lev N. Zakharov of the Center for Advanced Materials Characterization in Oregon (CAMCOR).

####

About University of Oregon
The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

For more information, please click here

Contacts:
Jim Barlow
director of science and research communications
541-346-3481


Source:
Shih-Yuan Liu
assistant professor of chemistry
541-346-5573

Copyright © University of Oregon

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Chemistry

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Discoveries

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Announcements

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Energy

New technology using silver may hold key to electronics advances July 2nd, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Fuel Cells

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

Buckle up for fast ionic conduction June 16th, 2015

A protective shield for sensitive catalysts: Hydrogels block harmful oxygen June 15th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project