Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Artificial molecules: Papers by UD researchers explore novel methods for assembly of quantum dots

UD's Matthew Doty is co-author of two papers exploring novel methods for assembling quantum dots to control how electrons interact with light and magnetic fields.
Photo by Kathy F. Atkinson
UD's Matthew Doty is co-author of two papers exploring novel methods for assembling quantum dots to control how electrons interact with light and magnetic fields.

Photo by Kathy F. Atkinson

Abstract:
Matthew Doty, assistant professor in the University of Delaware Department of Materials Science and Engineering, is co-author of two papers exploring novel methods for assembling quantum dots to control how electrons interact with light and magnetic fields for applications in next generation computing devices and solar energy capture.

Artificial molecules: Papers by UD researchers explore novel methods for assembly of quantum dots

Newark, DE | Posted on November 22nd, 2011

The papers recently appeared in Physical Review B, a journal of the American Physical Society (APS). Both papers were selected as "Editor's Suggestions," a designation reserved for only five percent of articles submitted to the journal.

Doty's group studies quantum dots, tiny semiconductors that can trap single electrons in a manner comparable to atoms like hydrogen and helium. Quantum dots are often referred to as "artificial atoms" because they have electronic properties similar to natural atoms. Doty's group explores the way these "artificial atoms" can be assembled to create "artificial molecules." Unlike natural molecules, the properties of these quantum dot molecules can be tailored to create unique and tunable properties for the electrons trapped in the molecules.

The first paper, entitled "In situ tunable g factor for a single electron confined inside an InAs quantum dot molecule," documents a new strategy for engineering the spin properties of single confined electrons.

Doty's team demonstrates this strategy by designing, fabricating and characterizing a quantum dot molecule that allows the electron properties to be tuned with a small change in the voltage applied to the molecule. The success of the strategy validates a new approach to engineering optoelectronic devices with dramatically improved computational power.

The lead author of the paper was Weiwen Liu, a doctoral student in Doty's research group. Co-authors include UD engineering doctoral students Ramsey Hazbun and Shilpa Sanwlani; James Kolodzey, Charles Black Evans Professor of Electrical and Computer Engineering; and Allan Bracker and Daniel Gammon from the Naval Research Laboratory.

The second paper, entitled "Spectroscopic signatures of many-body interactions and delocalized states in self-assembled lateral quantum dot molecules," describes a different molecular design, in which the two quantum dots are placed side by side instead of one on top of the other. The lateral geometry changes the way in which electrons are trapped in the molecule and creates more complex electronic molecular states. These new electronic states of the lateral molecular design provide a template for new computing architectures that overcome scaling limits of conventional charge-based computing by mediating interactions between single confined spins.

Xinran Zhou, a doctoral student in Doty's research group, served as the lead author of the paper. Co-authors include UD doctoral students Shilpa Sanwlani and Weiwen Liu and researchers from Kwangoon University of South Korea, the University of Arkansas and the University of Electronic Science and Technology of China.

Doty's work with quantum dot molecules is supported, in part, through funding from the National Science Foundation, which awarded him the prestigious Faculty Early Career Development Award in 2009. The highly competitive NSF Career Award is bestowed on researchers deemed most likely to become the academic leaders of the 21st century.

Doty, who joined the UD faculty in 2007, previously served as a National Research Council research associate at the Naval Research Laboratory after earning his bachelor's degree in physics from Pennsylvania State University and his doctoral degree in physics at the University of California, Santa Barbara.

Article by Gabriella Chiera

####

For more information, please click here

Contacts:
University of Delaware
Office of Communications & Marketing
302-831-NEWS

Copyright © University of Delaware

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

East China University of Science and Technology Purchases Nanonex Advanced Nanoimprint Tool NX-B200 July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

From Narrow to Broad July 30th, 2014

FLAG-ERA and TNT2014 join efforts: Graphene Networking at its higher level in Barcelona: Encourage the participation in a joint transnational call July 30th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New imaging agent provides better picture of the gut July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Chip Technology

Nanometrics Reports Second Quarter 2014 Financial Results July 30th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Self Assembly

Berkeley Lab researchers create nanoparticle thin films that self-assemble in 1 minute June 9th, 2014

Design of self-assembling protein nanomachines starts to click: A nanocage builds itself from engineered components June 5th, 2014

Molecular self-assembly scales up from nanometers to millimeters June 5th, 2014

Nano world: Where towers construct themselves: How physicists get control on the self-assembly process June 2nd, 2014

Discoveries

New imaging agent provides better picture of the gut July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

From Narrow to Broad July 30th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Announcements

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

Military

New imaging agent provides better picture of the gut July 30th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Energy

From Narrow to Broad July 30th, 2014

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Quantum Dots/Rods

Researchers create quantum dots with single-atom precision June 30th, 2014

New Los Alamos Approach May Be Key to Quantum Dot Solar Cells With Real Gains in Efficiency: Nanoengineering Boosts Carrier Multiplication in Quantum Dots June 19th, 2014

MIPT-based researcher predicts new state of matter June 17th, 2014

Technology using microwave heating may impact electronics manufacture June 10th, 2014

Solar/Photovoltaic

From Narrow to Broad July 30th, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Making dreams come true: Making graphene from plastic? July 2nd, 2014

Shrinky Dinks close the gap for nanowires July 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE