Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Artificial molecules: Papers by UD researchers explore novel methods for assembly of quantum dots

UD's Matthew Doty is co-author of two papers exploring novel methods for assembling quantum dots to control how electrons interact with light and magnetic fields.
Photo by Kathy F. Atkinson
UD's Matthew Doty is co-author of two papers exploring novel methods for assembling quantum dots to control how electrons interact with light and magnetic fields.

Photo by Kathy F. Atkinson

Abstract:
Matthew Doty, assistant professor in the University of Delaware Department of Materials Science and Engineering, is co-author of two papers exploring novel methods for assembling quantum dots to control how electrons interact with light and magnetic fields for applications in next generation computing devices and solar energy capture.

Artificial molecules: Papers by UD researchers explore novel methods for assembly of quantum dots

Newark, DE | Posted on November 22nd, 2011

The papers recently appeared in Physical Review B, a journal of the American Physical Society (APS). Both papers were selected as "Editor's Suggestions," a designation reserved for only five percent of articles submitted to the journal.

Doty's group studies quantum dots, tiny semiconductors that can trap single electrons in a manner comparable to atoms like hydrogen and helium. Quantum dots are often referred to as "artificial atoms" because they have electronic properties similar to natural atoms. Doty's group explores the way these "artificial atoms" can be assembled to create "artificial molecules." Unlike natural molecules, the properties of these quantum dot molecules can be tailored to create unique and tunable properties for the electrons trapped in the molecules.

The first paper, entitled "In situ tunable g factor for a single electron confined inside an InAs quantum dot molecule," documents a new strategy for engineering the spin properties of single confined electrons.

Doty's team demonstrates this strategy by designing, fabricating and characterizing a quantum dot molecule that allows the electron properties to be tuned with a small change in the voltage applied to the molecule. The success of the strategy validates a new approach to engineering optoelectronic devices with dramatically improved computational power.

The lead author of the paper was Weiwen Liu, a doctoral student in Doty's research group. Co-authors include UD engineering doctoral students Ramsey Hazbun and Shilpa Sanwlani; James Kolodzey, Charles Black Evans Professor of Electrical and Computer Engineering; and Allan Bracker and Daniel Gammon from the Naval Research Laboratory.

The second paper, entitled "Spectroscopic signatures of many-body interactions and delocalized states in self-assembled lateral quantum dot molecules," describes a different molecular design, in which the two quantum dots are placed side by side instead of one on top of the other. The lateral geometry changes the way in which electrons are trapped in the molecule and creates more complex electronic molecular states. These new electronic states of the lateral molecular design provide a template for new computing architectures that overcome scaling limits of conventional charge-based computing by mediating interactions between single confined spins.

Xinran Zhou, a doctoral student in Doty's research group, served as the lead author of the paper. Co-authors include UD doctoral students Shilpa Sanwlani and Weiwen Liu and researchers from Kwangoon University of South Korea, the University of Arkansas and the University of Electronic Science and Technology of China.

Doty's work with quantum dot molecules is supported, in part, through funding from the National Science Foundation, which awarded him the prestigious Faculty Early Career Development Award in 2009. The highly competitive NSF Career Award is bestowed on researchers deemed most likely to become the academic leaders of the 21st century.

Doty, who joined the UD faculty in 2007, previously served as a National Research Council research associate at the Naval Research Laboratory after earning his bachelor's degree in physics from Pennsylvania State University and his doctoral degree in physics at the University of California, Santa Barbara.

Article by Gabriella Chiera

####

For more information, please click here

Contacts:
University of Delaware
Office of Communications & Marketing
302-831-NEWS

Copyright © University of Delaware

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dream Chip Technologies Presents First 22nm FD-SOI Silicon of New Automotive Driver Assistance SoC: Advanced driver assistance system (ADAS) computer vision SoC developed for European THINGS2DO project with working first silicon fabricated on GLOBALFOUNDRIES’ 22nm FD-SOI Platfor February 27th, 2017

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Chip Technology

Dream Chip Technologies Presents First 22nm FD-SOI Silicon of New Automotive Driver Assistance SoC: Advanced driver assistance system (ADAS) computer vision SoC developed for European THINGS2DO project with working first silicon fabricated on GLOBALFOUNDRIES’ 22nm FD-SOI Platfor February 27th, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Self Assembly

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Synthetic nanoparticles achieve the complexity of protein molecules: Study published in Science reveals the structure of the largest gold nanoparticles to-date and the self-assembly mechanisms behind their formation January 25th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Discoveries

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Announcements

Dream Chip Technologies Presents First 22nm FD-SOI Silicon of New Automotive Driver Assistance SoC: Advanced driver assistance system (ADAS) computer vision SoC developed for European THINGS2DO project with working first silicon fabricated on GLOBALFOUNDRIES’ 22nm FD-SOI Platfor February 27th, 2017

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Military

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

Energy

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Quantum Dots/Rods

Particle Works creates range of high performance quantum dots February 23rd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Carbon dots dash toward 'green' recycling role: Rice scientists, colleagues use doped graphene quantum dots to reduce carbon dioxide to fuel December 18th, 2016

Two electrons go on a quantum walk and end up in a qudit: Russian scientists find a way to reliably connect quantum elements December 13th, 2016

Solar/Photovoltaic

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Material can turn sunlight, heat and movement into electricity -- all at once: Extracting energy from multiple sources could help power wearable technology February 9th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project