Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Artificial molecules: Papers by UD researchers explore novel methods for assembly of quantum dots

UD's Matthew Doty is co-author of two papers exploring novel methods for assembling quantum dots to control how electrons interact with light and magnetic fields.
Photo by Kathy F. Atkinson
UD's Matthew Doty is co-author of two papers exploring novel methods for assembling quantum dots to control how electrons interact with light and magnetic fields.

Photo by Kathy F. Atkinson

Abstract:
Matthew Doty, assistant professor in the University of Delaware Department of Materials Science and Engineering, is co-author of two papers exploring novel methods for assembling quantum dots to control how electrons interact with light and magnetic fields for applications in next generation computing devices and solar energy capture.

Artificial molecules: Papers by UD researchers explore novel methods for assembly of quantum dots

Newark, DE | Posted on November 22nd, 2011

The papers recently appeared in Physical Review B, a journal of the American Physical Society (APS). Both papers were selected as "Editor's Suggestions," a designation reserved for only five percent of articles submitted to the journal.

Doty's group studies quantum dots, tiny semiconductors that can trap single electrons in a manner comparable to atoms like hydrogen and helium. Quantum dots are often referred to as "artificial atoms" because they have electronic properties similar to natural atoms. Doty's group explores the way these "artificial atoms" can be assembled to create "artificial molecules." Unlike natural molecules, the properties of these quantum dot molecules can be tailored to create unique and tunable properties for the electrons trapped in the molecules.

The first paper, entitled "In situ tunable g factor for a single electron confined inside an InAs quantum dot molecule," documents a new strategy for engineering the spin properties of single confined electrons.

Doty's team demonstrates this strategy by designing, fabricating and characterizing a quantum dot molecule that allows the electron properties to be tuned with a small change in the voltage applied to the molecule. The success of the strategy validates a new approach to engineering optoelectronic devices with dramatically improved computational power.

The lead author of the paper was Weiwen Liu, a doctoral student in Doty's research group. Co-authors include UD engineering doctoral students Ramsey Hazbun and Shilpa Sanwlani; James Kolodzey, Charles Black Evans Professor of Electrical and Computer Engineering; and Allan Bracker and Daniel Gammon from the Naval Research Laboratory.

The second paper, entitled "Spectroscopic signatures of many-body interactions and delocalized states in self-assembled lateral quantum dot molecules," describes a different molecular design, in which the two quantum dots are placed side by side instead of one on top of the other. The lateral geometry changes the way in which electrons are trapped in the molecule and creates more complex electronic molecular states. These new electronic states of the lateral molecular design provide a template for new computing architectures that overcome scaling limits of conventional charge-based computing by mediating interactions between single confined spins.

Xinran Zhou, a doctoral student in Doty's research group, served as the lead author of the paper. Co-authors include UD doctoral students Shilpa Sanwlani and Weiwen Liu and researchers from Kwangoon University of South Korea, the University of Arkansas and the University of Electronic Science and Technology of China.

Doty's work with quantum dot molecules is supported, in part, through funding from the National Science Foundation, which awarded him the prestigious Faculty Early Career Development Award in 2009. The highly competitive NSF Career Award is bestowed on researchers deemed most likely to become the academic leaders of the 21st century.

Doty, who joined the UD faculty in 2007, previously served as a National Research Council research associate at the Naval Research Laboratory after earning his bachelor's degree in physics from Pennsylvania State University and his doctoral degree in physics at the University of California, Santa Barbara.

Article by Gabriella Chiera

####

For more information, please click here

Contacts:
University of Delaware
Office of Communications & Marketing
302-831-NEWS

Copyright © University of Delaware

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Chip Technology

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Self Assembly

New type of nanowires, built with natural gas heating: UNIST research team developed a new simple nanowire manufacturing technique February 1st, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Polymer nanowires that assemble in perpendicular layers could offer route to tinier chip components January 23rd, 2016

Nanodevice, build thyself: Researchers in Germany studied how a multitude of electronic interactions govern the encounter between a molecule called porphine and copper and silver surfaces January 18th, 2016

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Military

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists build a neural network using plastic memristors: A group of Russian and Italian scientists have created a neural network based on polymeric memristors -- devices that can potentially be used to build fundamentally new computers January 28th, 2016

Energy

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Quantum Dots/Rods

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

QD Vision Named to the 2015 Global Cleantech 100 Under the Radar List: Quantum Dot Leader Recognized for Clean Technology Innovation January 26th, 2016

Light-activated nanoparticles prove effective against antibiotic-resistant 'superbugs' January 19th, 2016

Solar/Photovoltaic

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

Simplifying solar cells with a new mix of materials: Berkeley Lab-led research team creates a high-efficiency device in 7 steps January 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic