Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UCLA team develops highly efficient method for creating flexible, transparent electrodes

Silver nanowire network
Silver nanowire network

Abstract:
As the market for liquid crystal displays and other electronics continues to drive up the price of indium — the material used to make the indium tin oxide (ITO) transparent electrodes in these devices — scientists have been searching for a less costly and more dynamic alternative, particularly for use in future flexible electronics.

UCLA team develops highly efficient method for creating flexible, transparent electrodes

Los Angeles, CA | Posted on November 22nd, 2011

Besides its high price, ITO has several drawbacks. It's brittle, making it impractical for use in flexible displays and solar cells, and there is a lack of availability of indium, which is found primarily in Asia. Further, the production of ITO films is relatively inefficient.

Now, researchers at UCLA report in the journal ACS Nano that they have developed a unique method for producing transparent electrodes that uses silver nanowires in combination with other nanomaterials. The new electrodes are flexible and highly conductive and overcome the limitations associated with ITO.

For some time, silver nanowire (AgNW) networks have been seen as promising candidates to replace ITO because they are flexible and each wire is highly conductive. But complicated treatments have often been required to fuse crossed AgNWs to achieve low resistance and good substrate adhesion. To address this, the UCLA researchers demonstrated that by fusing AgNWs with metal-oxide nanoparticles and organic polymers, they could efficiently produce highly transparent conductors.

The team of researchers represents a collaboration between the department of materials science and engineering at the UCLA Henry Samueli School of Engineering and Applied Science; the department of chemistry and biochemistry in the UCLA College of Letters and Science; and the California NanoSystems Institute (CNSI) at UCLA.

The team was led by Yang Yang, a professor of materials science and engineering, and Paul Weiss, director of the CNSI and a professor of materials science and engineering and of chemistry and biochemistry.

"In this work, we demonstrate a simple and effective solution method to achieve highly conductive AgNW composite films with excellent optical transparency and mechanical properties," said Yang who also directs the Nano Renewable Energy Center at the CNSI. "This is by far the best solution: a processed, transparent electrode that is compatible with a wide variety of substrate choices."

Scientists can easily spray a surface with the nanowires to make a transparent mat, but the challenge is to make the silver nanowires adhere to the surface more securely without the use of extreme temperatures (200° C) or high pressures, steps that make the nanomaterials less compatible with the sensitive organic materials typically used to make flexible electronics.

To meet this challenge, Rui Zhu, the paper's first author, developed a low-temperature method to make high-performance transparent electrodes from silver nanowires using spray coating of a unique combination of nanomaterials.

First, researchers sprayed a solution of commercially available silver nanowires onto a surface. They then treated the nanowires with a solution of titanium dioxide nanoparticles to create a hybrid film. As the film dries, capillary forces pull the nanowires together, improving the film's conductivity. The scientists then coated the film with a layer of conductive polymer to increase the wires' adhesion to the surface.

The AgNW composite meshes are highly conductive, with excellent optical transparency and mechanical properties. The research team also built solar cells using the new electrodes and found that their performance was comparable to that of solar cells made with indium tin oxide.

The research received support from the Office of Naval Research and the Kavli Foundation.

####

About UCLA
The California NanoSystems Institute is an integrated research facility located at UCLA and UC Santa Barbara. Its mission is to foster interdisciplinary collaborations in nanoscience and nanotechnology; to train a new generation of scientists, educators and technology leaders; to generate partnerships with industry; and to contribute to the economic development and the social well-being of California, the United States and the world. The CNSI was established in 2000 with $100 million from the state of California. The total amount of research funding in nanoscience and nanotechnology awarded to CNSI members has risen to over $900 million. UCLA CNSI members are drawn from UCLA's College of Letters and Science, the David Geffen School of Medicine, the School of Dentistry, the School of Public Health and the Henry Samueli School of Engineering and Applied Science. They are engaged in measuring, modifying and manipulating atoms and molecules — the building blocks of our world. Their work is carried out in an integrated laboratory environment. This dynamic research setting has enhanced understanding of phenomena at the nanoscale and promises to produce important discoveries in health, energy, the environment and information technology.

For more information, please click here

Contacts:
Jennifer Marcus,
310-267-4839

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Flexible Electronics

Copper shines as flexible conductor August 29th, 2014

Display technology/LEDs/SS Lighting/OLEDs

Copper shines as flexible conductor August 29th, 2014

LEDs made from ‘wonder material’ perovskite: Colourful LEDs made from a material known as perovskite could lead to LED displays which are both cheaper and easier to manufacture in future August 5th, 2014

Martini Tech Inc. becomes the exclusive distributor for Yoshioka Seiko Co. porous chucks for Europe and North America July 20th, 2014

'Nano-pixels' promise thin, flexible, high resolution displays July 9th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Chip Technology

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Discoveries

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Announcements

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Military

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Introducing the multi-tasking nanoparticle: Versatile particles offer a wide variety of diagnostic and therapeutic applications August 26th, 2014

Biomimetic photodetector 'sees' in color: Rice lab uses CMOS-compatible aluminum for on-chip color detection August 25th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Oxford Instruments Asylum Research Receives the 2014 Microscopy Today Innovation Award for blueDrive Photothermal Excitation August 18th, 2014

AQUANOVA receives Technology Leadership Award 2014 FROST & SULLIVAN honors NovaSOL® Technology again August 12th, 2014

Focal blood-brain-barrier disruption with high-frequency pulsed electric fields August 12th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE