Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Butterfly wings inspire design of water-repellent surface

Abstract:
The brilliant blue wings of the mountain swallowtail (Papilio ulysses) easily shed water because of the way ultra-tiny structures in the butterfly's wings trap air and create a cushion between water and wing.

Butterfly wings inspire design of water-repellent surface

College Park, MD | Posted on November 21st, 2011

Human engineers would like to create similarly water repellent surfaces, but past attempts at artificial air traps tended to lose their contents over time due to external perturbations. Now an international team of researchers from Sweden, the United States, and Korea has taken advantage of what might normally be considered defects in the nanomanufacturing process to create a multilayered silicon structure that traps air and holds it for longer than one year.

The researchers used an etching process to carve out micro-scale pores and sculpt tiny cones from the silicon. The team found that features of the resulting structure that might usually be considered defects, such as undercuts beneath the etching mask and scalloped surfaces, actually improved the water repellent properties of the silicon by creating a multilayered hierarchy of air traps. The intricate structure of pores, cones, bumps, and grooves also succeeded in trapping light, almost perfectly absorbing wavelengths just above the visible range.

The biologically inspired surface, described in the AIP's journal Applied Physics Letters, could find uses in electro-optical devices, infrared imaging detectors, or chemical sensors.

Article: "Multifunctional silicon inspired by wing of male Papilio ulysses" is accepted for publication in Applied Physics Letters.

Authors: Sang H. Yun(1), Hyung-Seok Lee (2), Young Ha Kwon, (3) Mats Göthelid(1), Sang Mo Koo (4), Lars Wagberg (5), Ulf O. Karlsson (1), and Jan Linnros (1).

(1) Materials Physics, Royal Institute of Technology, Kista, Sweden
(2) Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, Massachusetts
(3) Department of Mechanical Engineering, Kyung Hee University, Suwon, Republic of Korea
(4) Department of Electronic Materials, Kwangwoon University, Seoul, Republic of Korea
(5) Fibre and Polymer Technology, Royal Institute of Technology, Stockholm, Sweden

####

For more information, please click here

Contacts:
Catherine Meyers

301-209-3088

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Superconductivity: After the scenario, the staging August 20th, 2016

Imaging

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Spider silk: Mother Nature's bio-superlens August 22nd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Sensors

Down to the wire: ONR researchers and new bacteria August 18th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Perpetual 'ice water': Stable solid-liquid state revealed in nanoparticles: Gallium nanoparticles that are both solid and liquid are stable over a range of 1000 degrees Fahrenheit August 5th, 2016

New metamaterials can change properties with a flick of a light-switch: Material can lead to new optical devices August 3rd, 2016

Discoveries

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Materials/Metamaterials

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Industrial Nanotech, Inc. Provides Shareholder Update August 22nd, 2016

Carbodeon Ltd Oy Closes EUR 1.5 million Funding Round From Straightforward Capital: Carbodeon will accelerate its nanodiamonds business and expand manufacturing capacity August 21st, 2016

Announcements

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Photonics/Optics/Lasers

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Hexagonal boron nitride semiconductors enable cost-effective detection of neutron signals: Texas Tech University researchers demonstrate hexagonal boron nitride semiconductors as a cost-effective alternative for inspecting overseas cargo containers entering US ports August 17th, 2016

Prototype chip could help make quantum computing practical: Built-in optics could enable chips that use trapped ions as quantum bits August 9th, 2016

Scientists discover light could exist in a previously unknown form August 6th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic