Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New device uses gold nanoparticles to test for lung cancer

Fred R. Hirsch, MD, PhD, investigator at the University of Colorado Cancer Center and professor of medical oncology at the University of Colorado School of Medicine
Fred R. Hirsch, MD, PhD, investigator at the University of Colorado Cancer Center and professor of medical oncology at the University of Colorado School of Medicine

Abstract:
The metabolism of lung cancer patients is different than the metabolism of healthy people. And so the molecules that make up cancer patients' exhaled breath are different too. A new device pioneered at the University of Colorado Cancer Center and Nobel-Prize-winning Technion University in Haifa, Israel uses gold nanoparticles to trap and define these molecules in exhaled breath. By comparing these molecular signatures to control groups, the device can tell not only if a lung is cancerous, but if the cancer is small-cell or non-small-cell, and adenocarcinoma or squamous cell carcinoma.

New device uses gold nanoparticles to test for lung cancer

Denver, CO | Posted on November 17th, 2011

"This could totally revolutionize lung cancer screening and diagnosis," says Fred R. Hirsch, MD, PhD, investigator at the CU Cancer Center and professor of medical oncology at the University of Colorado School of Medicine. "The perspective here is the development of a non-traumatic, easy, cheap approach to early detection and differentiation of lung cancer."

The proof of concept, recently published in the journal Nanomedicine, showed that in a preliminary study the device clearly distinguished between the volatile organic compounds in cancer patients' exhaled breath compared to the breath of a control group. Subjects simply exhale into a bag, which separates superficial exhaled breath from breath that originated deeper in the lungs. And then this deep breath is analyzed by an array of gold nanoparticle sensors.

"What is unique here is that we take advantage of a nanotechnology development going on at Technion University that allows us to immediately identify very small molecules," Hirsch says, and based on the identity of these small molecules in exhaled breath, Hirsch and colleagues can tell if the breath came from a cancerous lung.

The device's potential uses go beyond diagnosis.

"We can measure the levels of volatile organic compounds against population scores to diagnose cancer and types of cancer, or can measure the change in patients' levels of VOCs across time with the intent of, for example, monitoring how well a patient responds to specific treatments," Hirsch says. A breath now and a breath after treatment could define whether a patient should stay with a drug regimen or explores other options.

Personalized medicine has come to lung cancer - just as in years past it has come to breast and some other cancers. The sooner and more accurately you can define the cancer subtype, the more precisely you can target the disease. This new device could eventually help doctors quickly, simply, and inexpensively define patients' lung cancer subtypes, allowing them to pair therapies with subtypes early in the treatment process.

In fact, Hirsch and his colleagues will soon publish very encouraging preclinical data showing that the device's gold nanoparticle sensors can distinguish between different types of lung cancer cells.

The device may also help doctors smooth the wrinkles in existing methods of cancer screening. For example, the National Lung Screening Trial recently reported that one of the major challenges in its more than 53,000-person study of low-dose chest CT scans to detect lung cancer was the trial's nearly 95 percent rate of false positives - CT scans found nodules that turned out not to be cancerous.

"That calls for better measures to distinguish what's a benign nodule and a malignant nodule," Hirsch says. "That's what we in the lung cancer group here at the University of Colorado Cancer Center want to study with this technology, and we have very encouraging preliminary data. We could potentially use the exhaled breath to determine who among the individuals with a CT-detected nodule should go for further work up and/or eventually treatment."

Where an $1,800 chest CT struggles, simply exhaling may succeed.

"If it works, you can imagine standing in the grocery store and having high risk people blow into a bag," Hirsch says.

####

About University of Colorado Cancer Center
The University of Colorado Cancer Center (CU Cancer Center) is the Rocky Mountain region’s only National Cancer Institute-designated comprehensive cancer center. NCI has given only 40 cancer centers this designation, deeming membership as “the best of the best.”

CU Cancer Center’s director is Dan Theodorescu, MD, PhD.

Headquartered on the University of Colorado Denver Anschutz Medical Campus, the CU Cancer Center is a consortium of three state universities (Colorado State University, University of Colorado at Boulder and University of Colorado Denver) and five institutions (University of Colorado Hospital, The Children’s Hospital, Denver Health, Denver VA Medical Center and National Jewish Health).

Together, our 440+ members are working to ease the cancer burden through cancer care, research, education and prevention and control.

For more information, please click here

Contacts:
Lynn G. Clark
Communications Manager
University of Colorado Cancer Center
303-724-3160
lynn.clark [at] ucd

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Organometallics welcomes new editor-in-chief: Paul Chirik, Ph.D. July 22nd, 2014

The Hiden EQP Plasma Diagnostic with on-board MCA July 22nd, 2014

Iran to Hold 3rd Int'l Forum on Nanotechnology Economy July 22nd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Nanomedicine

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

SentiMag® Now Available in Australia and New Zealand July 21st, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Discoveries

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Announcements

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE