Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoparticles Harvest Invisible Cancer Biomarkers

Abstract:
Cancer biologists have long presumed that tumor cells shed telltale markers into the blood and that finding these blood-borne biomarkers could provide an early indicator that cancer is developing somewhere in the body. While there has been some progress in finding such markers, researchers have been largely stymied in this pursuit by the fact that such proteins are present in trace amounts that are cloaked by the few proteins present in far larger amounts, such as albumin and antibodies.

Nanoparticles Harvest Invisible Cancer Biomarkers

Bethesda, MD | Posted on November 17th, 2011

Now, a research team at the George Mason University has shown that they can fish out the "invisible" proteins masked by albumin and other high concentration proteins using porous nanoparticles decorated with a series of chemical baits, each designed to harvest specific types of trace proteins from body fluids. Better yet, hooking these proteins onto the baits, which are buried within the pores of the nanoparticles, protects them from degradation until they can be released and analyzed using mass spectroscopy.

Alessandra Luchini led the international team of investigators that designed and tested the bait-laden core-shell nanoparticles. The investigators published their work in the Journal of the American Chemical Society.

Core-shell hydrogel nanoparticles have been touted as potential protein drug delivery vehicles that would sequester these drugs from the action of protein degrading enzymes in blood until they reach their targets in the body. Luchini and her collaborators turned this paradigm on its head, choosing to use them to instead remove proteins from the blood until they can be safely collected. The key was identifying a set of 17 molecules that the researchers could attach inside the cavity structures that exist in hydrogels. These cavities are large enough to let most proteins in, but are too small for the relatively gigantic proteins that are overwhelmingly prevalent in blood and other biological fluids. To prevent smaller fragments of albumin, which are also a major blood component, from entering the nanoparticles, the investigators added to the outer shell the chemical vinylsulfonic acid, or VSA, that actively excludes albumin fragments of all sizes.

For bait molecules, Luchini and her colleagues started with a few dye molecules that biochemists have used as protein binding agents and inhibitors of protein-protein interactions in chromatography experiments. Working from the chemical structures of these molecules, the investigators created a set of dyes that they could then react with their core-shell hydrogel nanoparticles. They then mix the resulting nanoparticles with a biological fluid - whole blood, urine, and sweat, for example - and incubated for 15 minutes. The particles are collected using a centrifuge, and the captured proteins are washed out for analysis using a set of buffers.

Luchini's team showed that the nanoparticles enabled a 10,000-fold effective amplification of protein levels in the wash fluid compared to their concentration in blood. As a result, they were able to use mass spectrometry to identify a variety of proteins that were previously undetectable in blood using any type of method that would be clinically useful.

####

About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "Multifunctional Core-Shell Nanoparticles: Discovery of Previously Invisible Biomarkers."

Related News Press

News and information

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Journal Nanotechnology Progress International (JONPI), newest edition out December 7th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Discoveries

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

ANU invention to inspire new night-vision specs December 7th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Announcements

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Journal Nanotechnology Progress International (JONPI), newest edition out December 7th, 2016

Research partnerships

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project