Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoparticles Seek and Destroy Drug-Resistant Glioblastoma

Abstract:
Glioblastoma is one of the most aggressive forms of brain cancer. Rather than presenting as a well-defined tumor, glioblastoma will often infiltrate the surrounding brain tissue, making it extremely difficult to treat surgically or with chemotherapy or radiation. Likewise, several mouse models of glioblastoma have proven completely resistant to all treatment attempts.

Nanoparticles Seek and Destroy Drug-Resistant Glioblastoma

Bethesda, MD | Posted on November 17th, 2011

In a new study, a team led by scientists at Sanford-Burnham Medical Research Institute (SBMRI) and the Salk Institute for Biological Studies developed a method to combine a tumor-homing peptide, a cell-killing peptide, and a nanoparticle that both enhances tumor cell death and allows the researchers to image the tumors. When used to treat mice with glioblastoma, this new nanosystem eradicated most tumors in one model and significantly delayed tumor development in another. These findings were published in the Proceedings of the National Academy of Sciences of the USA.

"This is a unique nanosystem for two reasons," said project leader Erkki Ruoslahti of the SBMRI. "First, linking the cell-killing peptide to nanoparticles made it possible for us to deliver it specifically to tumors, virtually eliminating the killer peptide's toxicity to normal tissues. Second, ordinarily researchers and clinicians are happy if they are able to deliver more drugs to a tumor than to normal tissues. We not only accomplished that, but were able to design our nanoparticles to deliver the killer peptide right where it acts, at the mitochondria, the cell's energy-generating center."

The nanosystem developed in this study is made up of three elements. First, a nanoparticle acts as the carrier framework for an imaging agent and for two peptides. One of these peptides guides the nanoparticle and its payload specifically to cancer cells and the blood vessels that feed them by binding cell surface markers that distinguish them from normal cells. This same peptide also drives the whole system inside these target cells, where the second peptide wreaks havoc on the mitochondria, triggering cellular suicide through a process known as apoptosis.

Together, these peptides and nanoparticles proved extremely effective at treating two different mouse models of glioblastoma. In the first model, treated mice survived significantly longer than untreated mice. In the second model, untreated mice survived for only eight to nine weeks. In sharp contrast, treatment with this nanosystem cured all but one of ten mice. What's more, in addition to providing therapy, the nanoparticles could aid in diagnosing glioblastoma; they are made of iron oxide, which makes them and the tumors they target visible by magnetic resonance imaging.

In a final twist, the researchers made the whole nanosystem even more effective by administering it to the mice in conjunction with a third peptide. Ruoslahti and his team previously showed that this peptide, known as iRGD, helps co-administered drugs penetrate deeply into tumor tissue. iRGD has been shown to substantially increase treatment efficacy of various drugs against human breast, prostate, and pancreatic cancers in mice, achieving the same therapeutic effect as a normal dose with one-third as much of the drug. Here, iRGD enhanced nanoparticle penetration and therapeutic efficacy.

In this study, the researchers tested their nanoparticles on mice that developed glioblastomas with the same characteristics as observed in humans with the disease. Once the nanoparticles reached the tumors' blood vessels, they delivered their payload directly to the cell's power producer, the mitochondria. By destroying the blood vessels and also some surrounding tumor cells, the investigators found they were able to cure some mice and extend the lifespan of the rest."

####

About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma."

Related News Press

News and information

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Wheat gets boost from purified nanotubes: Rice University toxicity study shows plant growth enhanced by -- but only by -- purified nanotubes December 6th, 2017

Arrowhead Presents New Clinical Data Demonstrating a Sustained Host Response in Hepatitis B Patients Following RNAi Therapy — Up to 5.0 log10 reduction in HBsAg observed; data presented at HEP DART 2017 — December 6th, 2017

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

Nanomedicine

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Arrowhead Presents New Clinical Data Demonstrating a Sustained Host Response in Hepatitis B Patients Following RNAi Therapy — Up to 5.0 log10 reduction in HBsAg observed; data presented at HEP DART 2017 — December 6th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Discoveries

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Wheat gets boost from purified nanotubes: Rice University toxicity study shows plant growth enhanced by -- but only by -- purified nanotubes December 6th, 2017

Announcements

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project