Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > United States Department of Defense Taps Nanocomp Technologies as Nanomanufacturing Partner: Company commits to build large-scale manufacturing facility, delivering assured supply of superior nanotube-based materials for critical national defense needs

Abstract:
Nanocomp Technologies, Inc., a developer of performance materials and component products from carbon nanotubes (CNTs), today announced it has been selected by the United States Government, under the Defense Production Act Title III program ("DPA Title III"), to supply CNT yarn and sheet material for the program needs of the Department of Defense, as well as to create a path toward commercialization for civilian industrial use. Nanocomp's CNT yarn and sheet materials are currently featured within the advanced design programs of several critical DoD and NASA applications.

United States Department of Defense Taps Nanocomp Technologies as Nanomanufacturing Partner: Company commits to build large-scale manufacturing facility, delivering assured supply of superior nanotube-based materials for critical national defense needs

Concord, NH | Posted on November 16th, 2011

The mission of DPA Title III is to create assured, affordable and commercially viable production of technology that has been specifically identified as essential for national defense, but where U.S. industry cannot be reasonably expected to deliver due to market conditions and other fiscal barriers. In a recent Presidential Determination, Nanocomp's CNT sheet and yarn material has been uniquely named to satisfy this critical gap, and the Company entered into a long-term lease on a 100,000 square foot, high-volume manufacturing facility in Merrimack, N.H., to meet projected production demand.

"To maintain a competitive edge in defense, there is an urgent need for a new generation of multifunctional materials to improve combat systems in space, air, ground and sea," said Peter Antoinette, president and CEO of Nanocomp Technologies. "We are extremely proud that our CNT material can deliver these strategic advantages and our efforts now turn to creating a full-scale production facility that will help the United States maintain its tactical military edge and continue the path towards broad insertion of carbon nanotube-based products across commercial industry."

The U.S. Dept. of Defense recognizes that CNT materials are vital to several of its next generation platforms and components, including lightweight body and vehicle armor with superior strength, improved structural components for satellites and aircraft, enhanced shielding on a broad array of military systems from electromagnetic interference (EMI) and directed energy, and lightweight cable and wiring. The Company's CTex™ CNT yarns and tapes, for example, can reduce the weight of aircraft wire and cable harnesses by as much as 50 percent, resulting in considerable operational cost savings, as well as provide other valuable attributes such as flame resistance and improved reliability.

"While U.S. industry has achieved nominal CNT production rates for demonstration and evaluation purposes, we recognize that production volume must be expanded to meet current and projected national security requirements," said Mark Buffler, program director, DPA Title III program. "We have therefore applied the authorities of Title III of the Defense Production Act to stimulate the investment into a timely expansion of cost-competitive, flexible and responsive manufacturing capabilities in support of the country's anticipated needs."

Most recently, Nanocomp's EMSHIELDTM sheet material was incorporated into the Juno spacecraft, launched on August 5, 2011, to provide protection against electrostatic discharge (ESD) as the spacecraft makes its way through space to Jupiter and is only one example of many anticipated program insertions for Nanocomp Technologies' CNT materials.

To learn more about DPA Title III, please visit www.acq.osd.mil/ott/index.html.

Press Release Reference Number: RX-11-1194

####

About Nanocomp Technologies, Inc.
Nanocomp Technologies, Inc. was formed in 2004 to leverage its proprietary and fundamental advancements in the production of long carbon nanotubes as well as a unique ability to fabricate them into physically strong, lightweight and electro-thermally conductive yarns and nonwoven sheets. The company’s objective is to develop products with revolutionary performance benefits that would create a new generation of advanced structural materials and electro-thermal devices. It has more than 20 patents pending and won the Wall Street Journal’s prestigious Technology Innovation Award in 2008. The company is headquartered in Concord, N.H.

For more information, please click here

Contacts:
Schwartz MSL
Robert Skinner
or
Kirsten Swenson
781-684-0770

or
Nanocomp Technologies, Inc.
John Dorr
603-442-8992 ext. 104

Copyright © Business Wire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Govt.-Legislation/Regulation/Funding/Policy

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Physicists precisely measure interaction between atoms and carbon surfaces May 28th, 2015

Linking superconductivity and structure May 28th, 2015

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

Materials/Metamaterials

SouthWest NanoTechnologies Introduces AgeNT™ Transparent Conductor System at SID Display Week, Booth #543 May 28th, 2015

Physicists precisely measure interaction between atoms and carbon surfaces May 28th, 2015

Linking superconductivity and structure May 28th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Announcements

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Military

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Linking superconductivity and structure May 28th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Aerospace/Space

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

International and U.S. Students and Teachers Headed to Toronto for 34th Annual International Space Development Conference®: Students competed in prestigious NSS-NASA Ames Space Settlement Design Contest May 9th, 2015

'Microcombing' creates stronger, more conductive carbon nanotube films May 5th, 2015

New-Contracts/Sales/Customers

Argonne chooses Beneq’s TFS 500 Atomic Layer Deposition System: Modularity and flexibility make for a natural choice May 14th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project