Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > In new quantum-dot LED design, researchers turn troublesome molecules to their advantage : A robust new architecture enables optimization for quantum-dot displays

In an early design (left), the path of least resistance was between the quantum dots, so the current bypassed the dots and produced no light. Using the atomic layer deposition (ALD) technique (right), researchers were able to funnel current directly through the dots, creating a fully functional, single-layered QD-LED. Image courtesy of Edward Likovich.
In an early design (left), the path of least resistance was between the quantum dots, so the current bypassed the dots and produced no light. Using the atomic layer deposition (ALD) technique (right), researchers were able to funnel current directly through the dots, creating a fully functional, single-layered QD-LED.

Image courtesy of Edward Likovich.

Abstract:
By nestling quantum dots in an insulating egg-crate structure, researchers at the Harvard School of Engineering and Applied Sciences (SEAS) have demonstrated a robust new architecture for quantum-dot light-emitting devices (QD-LEDs).

In new quantum-dot LED design, researchers turn troublesome molecules to their advantage : A robust new architecture enables optimization for quantum-dot displays

Cambridge, MA | Posted on November 15th, 2011

Quantum dots are very tiny crystals that glow with bright, rich colors when stimulated by an electric current. QD-LEDs are expected to find applications in television and computer screens, general light sources, and lasers.

Previous work in the field had been complicated by organic molecules called ligands that dangle from the surface of the quantum dots. The ligands play an essential role in quantum dot formation, but they can cause functional problems later on.

Thanks to an inventive change in technique devised by the Harvard team, the once-troublesome ligands can now be used to build a more versatile QD-LED structure. The new single-layer design, described in the journal Advanced Materials, can withstand the use of chemical treatments to optimize the device's performance for diverse applications.

"With quantum dots, the chemical environment that's optimal for growth is usually not the environment that's optimal for function," says co-principal investigator Venkatesh Narayanamurti, Benjamin Peirce Professor of Technology and Public Policy at SEAS.

The quantum dots, each only 6 nanometers in diameter, are grown in a solution that glows strikingly under a black light.

The solution of quantum dots can be deposited onto the surface of the electrodes using a range of techniques, but according to lead author Edward Likovich (A.B. '06, S.M. '08, Ph.D. '11), who conducted the research as a doctoral candidate in applied physics at SEAS, "That's when it gets complicated."

"The core of the dots is a perfect lattice of semiconductor material, but on the exterior it's a lot messier," he says. "The dots are coated with ligands, long organic chains that are necessary for precise synthesis of the dots in solution. But once you deposit the quantum dots onto the electrode surface, these same ligands make many of the typical device processing steps very difficult."

The ligands can interfere with current conduction, and attempts to modify them can cause the quantum dots to fuse together, destroying the properties that make them useful. Organic molecules can also degrade over time when exposed to UV rays.

Researchers would like to be able to use those ligands to produce the quantum dots in solution, while minimizing the negative impact of the ligands on current conduction.

"The QD technologies that have been developed so far are these big, thick, multilayer devices," says co-author Rafael Jaramillo, a Ziff Environmental Fellow at the Harvard University Center for the Environment. Jaramillo works in the lab of Shriram Ramanathan, Associate Professor of Materials Science at SEAS.

"Until now, those multiple layers have been essential for producing enough light, but they don't allow much control over current conduction or flexibility in terms of chemical treatments. A thin, monolayer film of quantum dots is of tremendous interest in this field, because it enables so many new applications."

The new QD-LED resembles a sandwich, with a single active layer of quantum dots nestled in insulation and trapped between two ceramic electrodes. To create light, current must be funneled through the quantum dots, but the dots also have to be kept apart from one another in order to function.

In an early design, the path of least resistance was between the quantum dots, so the electric current bypassed the dots and produced no light.

Abandoning the traditional evaporation technique they had been using to apply insulation to the device, the researchers instead used atomic layer deposition (ALD)—a technique that involves jets of water. ALD takes advantage of the water-resistant ligands on the quantum dots, so when the aluminum oxide insulation is applied to the surface, it selectively fills the gaps between the dots, producing a flat surface on the top.

The new structure allows more effective control over the flow of electrical current.

"Exploiting these hydrophobic ligands allowed us to insulate the interstices between the quantum dots, essentially creating a structure that acts as an egg crate for quantum dots," says co-author Kasey Russell (A.B. '02, Ph.D. '09), a postdoctoral fellow at SEAS. "The benefit is that we can funnel current directly through the quantum dots despite having only a single layer of them, and because we have that single layer, we can apply new chemical treatments to it, moving forward."

Through Harvard's Office of Technology Development, Likovich and his colleagues have applied for a provisional patent on the device. Beyond the possible applications in computer and TV displays, lights, and lasers, the technology could one day be used in field-effect transistors or solar cells.

The research was supported by the Harvard University Center for the Environment; the Nanoscale Science and Engineering Center at Harvard, which is funded by the National Science Foundation (NSF); and the use of facilities at the Harvard University Center for Nanoscale Systems, a member of the NSF-supported National Nanotechnology Infrastructure Network.

####

For more information, please click here

Contacts:
29 Oxford Street
Cambridge, MA 02138, USA
Caroline Perry

617-496-1351

Copyright © Harvard's School of Engineering and Applied Sciences (SEAS)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Light guide plate based on perovskite nanocomposites November 3rd, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project