Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Gelatin-based nanoparticle treatment may be a more effective clot buster

Abstract:
A targeted, nanoparticle gelatin-based clot-busting treatment dissolved significantly more blood clots than a currently used drug in an animal study of acute coronary syndrome presented at the American Heart Association's Scientific Sessions 2011.

Gelatin-based nanoparticle treatment may be a more effective clot buster

Dallas, TX | Posted on November 15th, 2011

The new drug-delivery system used gelatin to deactivate the clot-busting drug tissue plasminogen activator, or tPA, to treat acute coronary syndrome. Soundwaves were then used to reactivate tPA once it reached the blood clot. It is considered a stealth approach because tPA doesn't act until it has reached its target.

"When tPA is mixed with gelatin and administered in the form of nanoparticles, it reduces tPA activity. Inactivation of tPA during circulation is very important to reduce bleeding complications," said Yoshihiko Saito, M.D., senior author and professor and cardiologist at Nara Medical University in Kashihara, Japan.

This gelatin-based drug-delivery system could potentially treat patients with chest pain en route to the hospital via ambulance.

Traditionally, tPA is administered in the hospital, injected through a vein in the arm or a catheter inserted into the groin and guided directly into the blocked vessel.

Prompt clot-busting therapy, or thrombolysis, restores blood flow to the heart and can often prevent death. When a clot completely blocks a blood vessel, the recommended treatment is emergency angioplasty, when a tiny metal mesh tube is inserted into the artery to prop it open. However, about half of the patients who die from acute coronary syndrome do not reach the hospital in time to receive appropriate therapy.

"This drug delivery system aims to quickly restore blood flow. Restoring blood flow reduces tissue damage and improves the prognosis," Saito said.

The body naturally produces tPA, which helps prevent blood clots by inhibiting certain proteins involved in the clotting process. Gelatin also binds these proteins - in particular the von Willebrand factor, which in this study responded to gelatin combined with tPA, but not to tPA alone.

Tracking the drug using radioactive tPA, scientists analyzed blood clots in animals and found three times more nanoparticle tPA than regular isolated tPA. Thirty minutes after administerting drugs in a different animal model, blood flow was partially or completed restored in:

10 percent with tPA alone;
40 percent with tPA and ultrasound; and
90 percent with drug-delivery system of tPA /nanoparticle and ultrasound.

Acute coronary syndrome — when blood flow to the heart decreases abruptly — affects up to 1.2 million Americans each year. This includes chest pain and heart attacks.

Co-authors are Hiroyuki Kawata, M.D.; Tsunenari Soeda, M.D.; Yasuhiro Takemoto, M.D.; Ji-Hi Sung, M.D.; Yoshiko Uesugi, B.Sc.; Yasuhiko Tabata, Ph.D.; Kiyotaka Umaki, Ph.D.; Keiji Kato, Ph.D.; and Shiro Uemura, M.D. Author disclosures are on the abstract.

Statements and conclusions of study authors published in American Heart Association scientific journals are solely those of the study authors and do not necessarily reflect the association's policy or position. The association makes no representation or guarantee as to their accuracy or reliability. The association receives funding primarily from individuals; foundations and corporations (including pharmaceutical, device manufacturers and other companies) also make donations and fund specific association programs and events. The association has strict policies to prevent these relationships from influencing the science content. Revenues from pharmaceutical and device corporations are available at www.heart.org/corporatefunding.

####

For more information, please click here

Contacts:
AHA News Media Office
214-706-1396

Copyright © American Heart Association

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project