Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New biosensor benefits from melding of carbon nanotubes, DNA

Abstract:
Microbiosensors Based on DNA Modified Single-Walled Carbon Nanotube and Pt Black Nanocomposites

Jin Shi, Tae-Gon Cha, Jonathan C. Claussen, Alfred R. Diggs, Jong Hyun Choi and D. Marshall Porterfield

Glucose and ATP biosensors have important applications in diagnostics and research. Biosensors based on conventional materials suffer from low sensitivity and low spatial resolution. Our previous work has shown that combining single-walled carbon nanotubes (SWCNTs) with Pt nanoparticles can significantly enhance the performance of electrochemical biosensors. The immobilization of SWCNTs on biosensors remains challenging due to the aqueous insolubility originating from van der Waals forces. In this study, we used single-stranded DNA (ssDNA) to modify SWCNTs to increase solubility in water. This allowed us to explore new schemes of combining ssDNA-SWCNT and Pt black in aqueous media systems. The result is a nanocomposite with enhanced biosensor performance. The surface morphology, electroactive surface area, and electrocatalytic performance of different fabrication protocols were studied and compared. The ssDNA-SWCNT/Pt black nanocomposite constructed by a layered scheme proved most effective in terms of biosensor activity. The key feature of this protocol is the exploitation of ssDNA-SWCNTs as molecular templates for Pt black electrodeposition. The glucose and ATP microbiosensors fabricated on this platform exhibited high sensitivity (817.3 nA/mM and 45.6 nA/mM, respectively), wide linear range (up to 7 mM and 510 μM), low limit of detection (1 μM and 2 μM) and desirable selectivity. This work is significant to biosensor development because this is the first demonstration of ssDNA-SWCNT/Pt black nanocomposite as a platform for constructing both single-enzyme and multi-enzyme biosensors for physiological applications.

New biosensor benefits from melding of carbon nanotubes, DNA

West Lafayette, IN | Posted on November 14th, 2011

Purdue University scientists have developed a method for stacking synthetic DNA and carbon nanotubes onto a biosensor electrode, a development that may lead to more accurate measurements for research related to diabetes and other diseases.

Standard sensors employ metal electrodes coated with enzymes that react with compounds and produce an electrical signal that can be measured. But the inefficiency of those sensors leads to imperfect measurements.

Carbon nanotubes, cylindrically shaped carbon molecules known to have excellent thermal and electrical properties, have been seen as a possibility for improving sensor performance. The problem is that the materials are not fully compatible with water, which limits their application in biological fluids.

Marshall Porterfield, a professor of agricultural and biological engineering and biomedical engineering, and Jong Hyun Choi, an assistant professor of mechanical engineering, have found a solution. Their findings, reported in the journal The Analyst, describe a sensor that essentially builds itself.

"In the future, we will be able to create a DNA sequence that is complementary to the carbon nanotubes and is compatible with specific biosensor enzymes for the many different compounds we want to measure," Porterfield said. "It will be a self-assembling platform for biosensors at the biomolecular level."

Choi developed a synthetic DNA that will attach to the surface of the carbon nanotubes and make them more water-soluble.

"Once the carbon nanotubes are in a solution, you only have to place the electrode into the solution and charge it. The carbon nanotubes will then coat the surface," Choi said.

The electrode coated with carbon nanotubes will attract the enzymes to finish the sensor's assembly.

The sensor described in the findings was designed for glucose. But Porterfield said it could be easily adapted for various compounds.

"You could mass produce these sensors for diabetes, for example, for insulin management for diabetic patients," Porterfield said.

Porterfield said it may one day be possible to develop other sensors using this technology that could lead to more personalized medicines that could test in real time the effectiveness of drugs on their targets as with cancer patients.

Porterfield said he would continue to develop biosensors to detect different compounds.

The National Institutes of Health and the Office of Naval Research funded the research.

####

For more information, please click here

Contacts:
Writer:
Brian Wallheimer
765-496-2050


Sources:
Marshall Porterfield
765-494-1190


Jong Hyun Choi
765-496-3562


Ag Communications:
(765) 494-2722
Keith Robinson

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

Nanotubes/Buckyballs

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes - Planar light source using a phosphor screen with highly crystalline single-walled carbon nanotubes (SWCNTs) as field emitters demonstrates its potential for energy-efficient lighting device October 14th, 2014

Sensors

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Journal Nanotechnology Progress International (JONPI), 2014, Volume 5, Issue 1, pp 1-24 October 22nd, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Graphenea opens US branch October 16th, 2014

Discoveries

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Iranian Scientists Apply Nanotechnology to Produce Surgery Suture October 23rd, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Announcements

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Military

NanoTechnology for Defense (NT4D) October 22nd, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE