Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New biosensor benefits from melding of carbon nanotubes, DNA

Abstract:
Microbiosensors Based on DNA Modified Single-Walled Carbon Nanotube and Pt Black Nanocomposites

Jin Shi, Tae-Gon Cha, Jonathan C. Claussen, Alfred R. Diggs, Jong Hyun Choi and D. Marshall Porterfield

Glucose and ATP biosensors have important applications in diagnostics and research. Biosensors based on conventional materials suffer from low sensitivity and low spatial resolution. Our previous work has shown that combining single-walled carbon nanotubes (SWCNTs) with Pt nanoparticles can significantly enhance the performance of electrochemical biosensors. The immobilization of SWCNTs on biosensors remains challenging due to the aqueous insolubility originating from van der Waals forces. In this study, we used single-stranded DNA (ssDNA) to modify SWCNTs to increase solubility in water. This allowed us to explore new schemes of combining ssDNA-SWCNT and Pt black in aqueous media systems. The result is a nanocomposite with enhanced biosensor performance. The surface morphology, electroactive surface area, and electrocatalytic performance of different fabrication protocols were studied and compared. The ssDNA-SWCNT/Pt black nanocomposite constructed by a layered scheme proved most effective in terms of biosensor activity. The key feature of this protocol is the exploitation of ssDNA-SWCNTs as molecular templates for Pt black electrodeposition. The glucose and ATP microbiosensors fabricated on this platform exhibited high sensitivity (817.3 nA/mM and 45.6 nA/mM, respectively), wide linear range (up to 7 mM and 510 μM), low limit of detection (1 μM and 2 μM) and desirable selectivity. This work is significant to biosensor development because this is the first demonstration of ssDNA-SWCNT/Pt black nanocomposite as a platform for constructing both single-enzyme and multi-enzyme biosensors for physiological applications.

New biosensor benefits from melding of carbon nanotubes, DNA

West Lafayette, IN | Posted on November 14th, 2011

Purdue University scientists have developed a method for stacking synthetic DNA and carbon nanotubes onto a biosensor electrode, a development that may lead to more accurate measurements for research related to diabetes and other diseases.

Standard sensors employ metal electrodes coated with enzymes that react with compounds and produce an electrical signal that can be measured. But the inefficiency of those sensors leads to imperfect measurements.

Carbon nanotubes, cylindrically shaped carbon molecules known to have excellent thermal and electrical properties, have been seen as a possibility for improving sensor performance. The problem is that the materials are not fully compatible with water, which limits their application in biological fluids.

Marshall Porterfield, a professor of agricultural and biological engineering and biomedical engineering, and Jong Hyun Choi, an assistant professor of mechanical engineering, have found a solution. Their findings, reported in the journal The Analyst, describe a sensor that essentially builds itself.

"In the future, we will be able to create a DNA sequence that is complementary to the carbon nanotubes and is compatible with specific biosensor enzymes for the many different compounds we want to measure," Porterfield said. "It will be a self-assembling platform for biosensors at the biomolecular level."

Choi developed a synthetic DNA that will attach to the surface of the carbon nanotubes and make them more water-soluble.

"Once the carbon nanotubes are in a solution, you only have to place the electrode into the solution and charge it. The carbon nanotubes will then coat the surface," Choi said.

The electrode coated with carbon nanotubes will attract the enzymes to finish the sensor's assembly.

The sensor described in the findings was designed for glucose. But Porterfield said it could be easily adapted for various compounds.

"You could mass produce these sensors for diabetes, for example, for insulin management for diabetic patients," Porterfield said.

Porterfield said it may one day be possible to develop other sensors using this technology that could lead to more personalized medicines that could test in real time the effectiveness of drugs on their targets as with cancer patients.

Porterfield said he would continue to develop biosensors to detect different compounds.

The National Institutes of Health and the Office of Naval Research funded the research.

####

For more information, please click here

Contacts:
Writer:
Brian Wallheimer
765-496-2050


Sources:
Marshall Porterfield
765-494-1190


Jong Hyun Choi
765-496-3562


Ag Communications:
(765) 494-2722
Keith Robinson

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers: Solution enables a battery with both high efficiency & current density February 24th, 2015

Nanotubes/Buckyballs

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Half spheres for molecular circuits: Corannulene shows promising electronic properties February 17th, 2015

SouthWest Nanotechnologies CEO Dave Arthur Appointed to the Board of Affiliates of Rice University Professional Science Master’s Program February 13th, 2015

Sensors

Penn researchers develop new technique for making molybdenum disulfide: Extra control over monolayer material with advantages over graphene February 19th, 2015

Researchers build atomically thin gas and chemical sensors: Sensors made of molybdenum disulfide are small, thin and have a high level of selectivity when detecting gases and chemicals February 19th, 2015

Production of Biosensor in Iran to Detect Oxalic Acid February 18th, 2015

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Discoveries

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Announcements

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Military

Simulating superconducting materials with ultracold atoms: Rice physicists build superconductor analog, observe antiferromagnetic order February 23rd, 2015

Perfect colors, captured with one ultra-thin lens: No need for color correction -- Harvard physicists' flat optics, using nanotechnology, get it right the first time February 19th, 2015

Penn researchers develop new technique for making molybdenum disulfide: Extra control over monolayer material with advantages over graphene February 19th, 2015

New nanogel for drug delivery: Self-healing gel can be injected into the body and act as a long-term drug depot February 19th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE