Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > SOI Industry Consortium publishes technical paper on porting semiconductor designs from bulk silicon to FD-SOI consortium: Ability to Leverage Existing IC Designs Can Speed Time-to-Market for FD-SOI Devices at the 20nm Node

Abstract:
A group of leading semiconductor companies have developed a roadmap for leveraging CMOS designs intended for manufacturing on bulk silicon to fabricate ICs on fully depleted silicon-on-insulator (FD-SOI) substrates with ultra-thin buried oxide layers, producing chips with improved performance and lower operating power. The companies involved in this collaborative research effort - including SOI Industry Consortium members ARM, Leti, Université Catholique de Louvain (UCL), IBM, GlobalFoundries and Soitec - have published their findings in a new white paper titled "Considerations for Bulk CMOS to FD-SOI Design Porting."

SOI Industry Consortium publishes technical paper on porting semiconductor designs from bulk silicon to FD-SOI consortium: Ability to Leverage Existing IC Designs Can Speed Time-to-Market for FD-SOI Devices at the 20nm Node

Boston, MA | Posted on November 12th, 2011

"This work shows that porting circuits from bulk silicon to FD-SOI can be very direct, depending on the FD-SOI technology used by a specific chipmaker," said Horacio Mendez, executive director of the SOI Industry Consortium. "Design porting can enable shorter time-to-market for FD-SOI-based devices. Porting existing bulk CMOS designs to FD-SOI will lead to further optimization of ICs at the 20nm node and even faster implementation of FD-SOI devices."

The research, which examined both bulk-to-FD-SOI IP porting and full-chip design porting, determined that using existing planar designs with minimal adjustments is especially viable for standard cell libraries, memory compilers and most I/Os, with slightly more efforts for some types of analog and mixed-signal designs.

In terms of circuit performance, the key benefits of using FD-SOI over planar bulk CMOS include:

- Faster operation at equivalent leakage current, with FD-SOI's advantage becoming even larger at lower supply voltages (Vdd)

- Power savings of up to 40 percent, enabled by FD-SOI's ability to reach the same operating frequencies as bulk CMOS at significantly lower supply voltage

- Greatly reduced variability, with a positive impact on the minimum supply voltage of SRAM arrays, chip-level leakage, etc.

- The ability to operate complete IP cores or full chips at very low supply voltages down to 0.5-0.6 volt

- Excellent responsiveness to back-bias, a powerful option available in FD-SOI devices to boost performance, cut leakage power and reduce corner variations

- Enhanced efficiency of other low-power design techniques such as DVFS (Dynamic Voltage and Frequency Scaling) etc.

The new white paper's section on "Impact Per Design Domain" examines two paths for full-chip design porting. The most straightforward and fastest porting from bulk silicon to FD-SOI aims at not changing the place-and-route and modifying as little as possible the graphic database system (GDS) contents. The second approach optimizes the system-on-chip (SOC) design to take full advantage of FD-SOI enhancements such as back-biasing.

Appendices and reference sections in the white paper provide details on the various technology issues involved and links to FD-SOI technical papers presented at top industry conferences in recent years.

In addition to accommodating bulk-silicon designs, FD-SOI technology enables simplified processing of semiconductor devices, using fewer steps than fabricating ICs on bulk silicon. This streamlining means that, at upcoming technology nodes, it will cost less to manufacture semiconductors on FD-SOI wafers than on bulk silicon, as quantified in a recent study by IC Knowledge.

####

About SOI Industry Consortium
The SOI Industry Consortium is chartered with accelerating silicon-on-insulator (SOI) innovation into broad markets by promoting the benefits of SOI technology and reducing the barriers to adoption. Representing innovation leaders from the entire electronics industry infrastructure, current SOI Industry Consortium members include AMD, Applied Materials, ARM, Cadence Design Systems, CEA-Léti, Freescale Semiconductor, GLOBALFOUNDRIES, IBM, IMEC, Infotech, Innovative Silicon, Kanazawa Institute of Technology , KLA-Tencor, MEMC, Mentor Graphics, MIT Lincoln Laboratories, Nvidia, Ritsumeikan University, Samsung, Semico, SEH Europe, Soitec, Stanford University, STMicroelectronics, Synopsys, Tyndall Institute, University of California-Berkeley, University Catholique de Louvain, UMC and Varian. Membership is open to all companies and institutions throughout the electronics industry.

Legal Note:

The views and opinions expressed by the SOI Industry Consortium through officers in the SOI Industry Consortium or in this presentation or other communication vehicles are not necessarily representative of the views and opinions of individual members. Officers of the SOI Industry Consortium speaking on behalf of the Consortium should not be considered to be speaking for the member company or companies they are associated with, but rather as representing the views of the SOI Industry Consortium. Views and opinions are also subject to change without notice, and the SOI Industry Consortium assumes no obligation to update the information in this communication or accompanying discussions.

For more information, please click here

Contacts:
Camille Darnaud-Dufour
+33 (0) 6 79 49 51 43

Copyright © SOI Industry Consortium

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

National Science Foundation Selects SUNY Poly CNSE for Expanded $2.1M Northeast Advanced Technological Education Center: NSF Center Locates to NanoCollege in Support of Flourishing Tech Industry in NYS September 1st, 2015

RUSNANOPRIZE Directorate Announces New Deadline for Nominations Submission – September 11, 2015 September 1st, 2015

$200K Awarded to Develop In Vitro Lung Test for Toxicity of Inhaled Nanomaterials: In Vitro Lung Test Designed to Protect Human Health and Replace Animal Testing September 1st, 2015

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Chip Technology

Nanometrics to Participate in the Citi 2015 Global Technology Conference August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

A little light interaction leaves quantum physicists beaming August 25th, 2015

'Magic' sphere for information transfer: Professor at the Lomonosov Moscow State University made the «magic» sphere for information transfer August 24th, 2015

Announcements

$200K Awarded to Develop In Vitro Lung Test for Toxicity of Inhaled Nanomaterials: In Vitro Lung Test Designed to Protect Human Health and Replace Animal Testing September 1st, 2015

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Alliances/Trade associations/Partnerships/Distributorships

National Space Society Welcomes Janet Ivey As New NSS Governor: Janet Ivey of Janet's Planet is NOW IN ORBIT as a member of the Board of Governors of the National Space Society August 27th, 2015

National Space Society Welcomes Geoff Notkin As New NSS Governor August 26th, 2015

XEI Scientific appoints EM Resolutions as Distributor for the UK & Irish markets August 11th, 2015

Omni Nano and Time Warner Cable Partner to Provide Nanotechnology Education to the Boys & Girls Clubs of Los Angeles: A $10,000 Donation to Benefit Youth of Los Angeles County's Boys & Girls Clubs August 4th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic