Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Are electron tweezers possible? Apparently so

Abstract:
Not to pick up electrons, but tweezers made of electrons. A recent paper* by researchers from the National Institute of Standards and Technology (NIST) and the University of Virginia (UVA) demonstrates that the beams produced by modern electron microscopes can be used not just to look at nanoscale objects, but to move them around, position them and perhaps even assemble them.

Are electron tweezers possible? Apparently so

Gaithersburg, MD | Posted on November 9th, 2011

Essentially, they say, the tool is an electron version of the laser "optical tweezers" that have become a standard tool in biology, physics and chemistry for manipulating tiny particles. Except that electron beams could offer a thousand-fold improvement in sensitivity and resolution.

Optical tweezers were first described in 1986 by a research team at Bell Labs. The general idea is that under the right conditions, a tightly focused laser beam will exert a small but useful force on tiny particles. Not pushing them away, which you might expect, but rather drawing them towards the center of the beam. Biochemists, for example, routinely use the effect to manipulate individual cells or liposomes under a microscope.

If you just consider the physics, says NIST metallurgist Vladimir Oleshko, you might expect that a beam of focused electrons—such as that created by a transmission electron microscope (TEM)—could do the same thing. However that's never been seen, in part because electrons are much fussier to work with. They can't penetrate far through air, for example, so electron microscopes use vacuum chambers to hold specimens.

So Oleshko and his colleague, UVA materials scientist James Howe, were surprised when, in the course of another experiment, they found themselves watching an electron tweezer at work. They were using an electron microscope to study, in detail, what happens when a metal alloy melts or freezes. They were observing a small particle—a few hundred microns wide—of an aluminum-silicon alloy held just at a transition point where it was partially molten, a liquid shell surrounding a core of still solid metal. In such a small sample, the electron beam can excite plasmons, a kind of quantized wave in the alloy's electrons, that reveals a lot about what happens at the liquid-solid boundary of a crystallizing metal. "Scientifically, it's interesting to see how the electrons behave," says Howe, "but from a technological point of view, you can make better metals if you understand, in detail, how they go from liquid to solid."

"This effect of electron tweezers was unexpected because the general purpose of this experiment was to study melting and crystallization," Oleshko explains. "We can generate this sphere inside the liquid shell easily; you can tell from the image that it's still crystalline. But we saw that when we move or tilt the beam—or move the microscope stage under the beam—the solid particle follows it, like it was glued to the beam."

Potentially, Oleshko says, electron tweezers could be a versatile and valuable tool, adding very fine manipulation to wide and growing lists of uses for electron microscopy in materials science.** "Of course, this is challenging because it requires a vacuum," he says, "but electron probes can be very fine, three orders of magnitude smaller than photon beams—close to the size of single atoms. We could manipulate very small quantities, even single atoms, in a very precise way."

* V.P. Oleshko and J.M. Howe. Are electron tweezers possible? Ultramicroscopy (2011) doi:10.1016/j.ultramic.2011.08.015.

####

For more information, please click here

Contacts:
Michael Baum

301-975-2763

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See, for example, the Jan. 19, 2011, Tech Beat story "NIST Puts a New Twist on the Electron Beam" at:

Related News Press

News and information

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Laboratories

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Scientists uncover origin of high-temperature superconductivity in copper-oxide compound: Analysis of thousands of samples reveals that the compound becomes superconducting at an unusually high temperature because local electron pairs form a 'superfluid' that flows without resist August 19th, 2016

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Govt.-Legislation/Regulation/Funding/Policy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Announcements

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tools

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Spider silk: Mother Nature's bio-superlens August 22nd, 2016

Tracing barnacle's footprint August 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic