Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Breakthrough in low loss high frequency carbon nanotube electronics

Abstract:
A collaboration between researchers at the University of Surrey's Advanced Technology Institute and the Faculty of Mechatronics of Warsaw University of Technology in Poland reports that low electrical loss at frequencies of up to 220 GHz are possible in screen printed carbon nanotube - polymer composites. Producing such low electrical loss materials potentially opens up new types of high frequency large area electronic devices.

Breakthrough in low loss high frequency carbon nanotube electronics

Surrey, UK | Posted on November 9th, 2011

A carbon nanotube (CNT) is a rolled up sheet of graphene that has a diameter of only a few nanometers. This size is equivalent to thousandths of the diameter of a human hair but despite their small size CNTs have outstanding properties such as high strength and an ability to carry a very high electrical current. Building upon previous EPSRC-funded research in carbon nanotube polymer composite electronics, this study, published recently in the American Institute of Physics journal Applied Physics Letters, shows that CNT composites have electrical losses of less than 0.3 dB/mm over a wide frequency range. Embedding CNTs in a polymer, in this case PMMA, allows accurate control of the nanotube content and control over the conductive phase of the composite which was screen printed into coplanar waveguides to produce structures tens of mm in length. Using a screen printing technology allows for ease of scalability for production and relaxes many of the constraints found in high end manufacturing techniques. Possible applications include new types of microwave mixers, phase shifters and antennas.

Dr David Carey from the Advanced Technology Institute of the University of Surrey said: "The success of the research is to be found by employing the unique high frequency electrical characterisation facilities at Surrey to explore electrical conduction in large area carbon nanotube based composites. Understanding what controls the conduction at the nanometer scale in these new materials can lead to the development of new high frequency carbon nanotube based electronics."

Professor Ravi Silva, Director of the Advanced Technology Institute at Surrey, said "This research shows the transformational benefits that can happen of bringing high quality specialised experimental facilities to tackle some of the key problems in modern nanotechnology and electronics. The research offers the potential for new applications of carbon nanotubes."

####

For more information, please click here

Contacts:
David Carey


Media Enquiries

Peter La
Press Office
University of Surrey
Tel: +44 (0)1483 689191

Copyright © University of Surrey

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For further information please see “Electrical performance of carbon nanotube-polymer composites at frequencies up to 220 GHz” by Ali H. Alshehri, Malgorzata Jakubowska, Marcin Sloma, Michal Horaczek, Diana Rudka, Charles Free and J. David Carey, Appl. Phys. Lett., Volume 99, 153109 (2011).

Related News Press

News and information

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Graphene/ Graphite

Graphene forged into three-dimensional shapes September 26th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Ames Laboratory scientists move graphene closer to transistor applications August 30th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Nanoelectronics

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Columbia engineers invent breakthrough millimeter-wave circulator IC October 6th, 2017

Tungsten offers nano-interconnects a path of least resistance: Crystalline tungsten shows insight and promise in addressing the challenges of electrical interconnects that have high resistivity at the nanoscale October 4th, 2017

Discoveries

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Research partnerships

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

More 22 of 59,885 Print all In new window Leti to Present Update of CoolCube/3DVLSI Technologies Development at 2017 IEEE S3S: Future Developments and Tape-Out Vehicles to Be Presented during Oct. 17 Workshop October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Printing/Lithography/Inkjet/Inks/Bio-printing

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Simultaneous Design and Nanomanufacturing Speeds Up Fabrication: Method enhances broadband light absorption in solar cells August 5th, 2017

Meniscus-assisted technique produces high efficiency perovskite PV films July 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project