Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Breakthrough in low loss high frequency carbon nanotube electronics

Abstract:
A collaboration between researchers at the University of Surrey's Advanced Technology Institute and the Faculty of Mechatronics of Warsaw University of Technology in Poland reports that low electrical loss at frequencies of up to 220 GHz are possible in screen printed carbon nanotube - polymer composites. Producing such low electrical loss materials potentially opens up new types of high frequency large area electronic devices.

Breakthrough in low loss high frequency carbon nanotube electronics

Surrey, UK | Posted on November 9th, 2011

A carbon nanotube (CNT) is a rolled up sheet of graphene that has a diameter of only a few nanometers. This size is equivalent to thousandths of the diameter of a human hair but despite their small size CNTs have outstanding properties such as high strength and an ability to carry a very high electrical current. Building upon previous EPSRC-funded research in carbon nanotube polymer composite electronics, this study, published recently in the American Institute of Physics journal Applied Physics Letters, shows that CNT composites have electrical losses of less than 0.3 dB/mm over a wide frequency range. Embedding CNTs in a polymer, in this case PMMA, allows accurate control of the nanotube content and control over the conductive phase of the composite which was screen printed into coplanar waveguides to produce structures tens of mm in length. Using a screen printing technology allows for ease of scalability for production and relaxes many of the constraints found in high end manufacturing techniques. Possible applications include new types of microwave mixers, phase shifters and antennas.

Dr David Carey from the Advanced Technology Institute of the University of Surrey said: "The success of the research is to be found by employing the unique high frequency electrical characterisation facilities at Surrey to explore electrical conduction in large area carbon nanotube based composites. Understanding what controls the conduction at the nanometer scale in these new materials can lead to the development of new high frequency carbon nanotube based electronics."

Professor Ravi Silva, Director of the Advanced Technology Institute at Surrey, said "This research shows the transformational benefits that can happen of bringing high quality specialised experimental facilities to tackle some of the key problems in modern nanotechnology and electronics. The research offers the potential for new applications of carbon nanotubes."

####

For more information, please click here

Contacts:
David Carey


Media Enquiries

Peter La
Press Office
University of Surrey
Tel: +44 (0)1483 689191

Copyright © University of Surrey

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For further information please see “Electrical performance of carbon nanotube-polymer composites at frequencies up to 220 GHz” by Ali H. Alshehri, Malgorzata Jakubowska, Marcin Sloma, Michal Horaczek, Diana Rudka, Charles Free and J. David Carey, Appl. Phys. Lett., Volume 99, 153109 (2011).

Related News Press

News and information

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Graphene/ Graphite

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Researchers “iron out” graphene’s wrinkles: New technique produces highly conductive graphene wafers April 3rd, 2017

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

Nanotubes/Buckyballs/Fullerenes

Nanotubes that build themselves April 14th, 2017

Intertronics introduce new nanoparticle deagglomeration technology March 15th, 2017

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

Nanoelectronics

Researchers “iron out” graphene’s wrinkles: New technique produces highly conductive graphene wafers April 3rd, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

Discoveries

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Announcements

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Research partnerships

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Printing/Lithography/Inkjet/Inks/Bio-printing

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project