Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Mini robots invade US nanospace

Abstract:
What is the size of a gambling die, zips around a microscope stage at 2mm/s but can stop on a dime with nanometer precision, then manipulate and probe anything from biological cells to semiconductors, MEMs or LEDs? They are the new "miBots" from Imina Technologies (Ecublens, Switzerland).

Mini robots invade US nanospace

Ecublens, Switzerland | Posted on November 9th, 2011

miBots are more than nanomanipulators. Unlike conventional systems, they are virtually untethered and move independently. Working individually or in groups, they can be fitted with a variety of tools such as grippers, probes, and optical fibers so that, in addition to manipulating the sample, they can illuminate a nano workspace and conduct force or electrical measurements. Vacuum ready, miBots‚ proprietary monolithic structure makes them robust, mechanically and thermally stable, and less sensitive to vibration.

Driven by piezo actuators, miBots scoot around the microscope stage, pivot, and lift their tools up and down, all at the touch of a joystick or easy-to-use graphical interface. These intuitive human interfaces make miBots easy to set up and easy to learn, reducing time and eliminating the risk of sample damage. Their independent X, Y, and Z controls deliver the delicate positioning especially important in scanning electron microscopy (SEM) where limited depth of focus makes maneuvering a challenge. For increased productivity and time savings, miBots can be programmed to do repetitive tasks using scripting languages like MATLAB®.

There are a number of stage options for these novel mini robots. For conventional installation on inverted light microscopes (LM), SEMs, or focused-ion beam systems (FIBs), the "miBase" provides control and maneuvering room for up to four miBots. Special apertures accommodate illumination for the LM and stubs for SEMs, and multiple coaxial I/O connections enable electrical characterization and testing.

For custom applications or smaller SEMs, the "miCube" and "multiCube" provide bases for one or four miBots, respectively, while for large samples such as semiconductor wafers, the new "XY-13-OL" platform offers 13x13mm travel with 50nm precision. Installation for each of the stages is straightforward, requiring minimal technical expertise. A turnkey vacuum kit facilitates installation inside any electron microscope.

miBots will be working in the Imina Technologies booth at the upcoming Materials Research Society Fall Meeting (Booth #1304, Nov 28-Dec 2, Boston, MA.,MRS.org), and at a series of West Coast workshops (Dec 5-9). For workshop details and videos of the miBots in action, visit www.imina.ch.

####

For more information, please click here

Contacts:
Barbara Foster
Phone: (972) 924-5310

Copyright © Imina Technologies

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Nanometrics Announces $80 Million Share Repurchase Program March 14th, 2019

Imaging

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Lightweight metal foams become bone hard and explosion proof after being nanocoated March 14th, 2019

Molecular Machines

Kanazawa University research: A closed cage-like molecule that can be opened January 22nd, 2019

Insights into magnetic bacteria may guide research into medical nanorobots December 12th, 2018

How to mass produce cell-sized robots: Technique from MIT could lead to tiny, self-powered devices for environmental, industrial, or medical monitoring October 24th, 2018

How swarms of nanomachines could improve the efficiency of any machine September 28th, 2018

Molecular Nanotechnology

The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling December 16th, 2018

Insights into magnetic bacteria may guide research into medical nanorobots December 12th, 2018

How to mass produce cell-sized robots: Technique from MIT could lead to tiny, self-powered devices for environmental, industrial, or medical monitoring October 24th, 2018

How swarms of nanomachines could improve the efficiency of any machine September 28th, 2018

Announcements

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Tools

Lightweight metal foams become bone hard and explosion proof after being nanocoated March 14th, 2019

Nanometrics Announces $80 Million Share Repurchase Program March 14th, 2019

New optical imaging system could be deployed to find tiny tumors: Near-infrared technology pinpoints fluorescent probes deep within living tissue; may be used to detect cancer earlier March 8th, 2019

New blueprint for understanding, predicting and optimizing complex nanoparticles: Guidelines have the potential to transform the fields of optoelectronics, bio-imaging and energy harvesting March 1st, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project