Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Graphene poised to propel mechanical device technology forward

Craighead lab
A false-color microscopy image of a 30-by-30 micron square of graphene covering a square trench to form a nanomechanical resonator. These devices, which are the thinnest possible microelectromechanical systems and are useful for sensing and signal processing, can now be batch-fabricated as a result of recent advances in graphene fabrication technology.
Craighead lab

A false-color microscopy image of a 30-by-30 micron square of graphene covering a square trench to form a nanomechanical resonator. These devices, which are the thinnest possible microelectromechanical systems and are useful for sensing and signal processing, can now be batch-fabricated as a result of recent advances in graphene fabrication technology.

Abstract:
Graphene is sort of a scientific rock star, with countless groups studying its amazing electrical properties and tensile strength and dreaming up applications ranging from flat-panel screens to elevators in space.

Graphene poised to propel mechanical device technology forward

Ithaca, NY | Posted on November 9th, 2011

The single-layer carbon sheets' stellar qualities are only just being understood in all their capacities, say scientists at Cornell -- and researchers can dream big (or rather, very small) when it comes to everything graphene can offer.

That's what scientists in the lab of Harold Craighead, the Charles W. Lake Professor of Engineering, say in an American Vacuum Society online review article, Sept. 9, about graphene's present and future. The article made the cover of the printed journal and quickly became one of its most-downloaded pieces.

"It's becoming clear that with modern fabrication techniques, you can imagine turning graphene into a technology," said Robert A. Barton, graduate student and lead author. "People often focus on the electronic applications of graphene, and they don't really think as much of its mechanical applications."

It's precisely this area where Cornell has produced some pioneering work. In particular the Craighead group, in collaboration with others including Jiwoong Park, assistant professor of chemistry and chemical biology, and Paul McEuen, the Goldwin Smith Professor of Physics, has used graphene in nanoelectromechanical systems (NEMS), analogous to an earlier generation's microelectromechanical systems (MEMS).

"We've moved beyond working with little exfoliated flakes and more with grown materials that can be incorporated and connected with electronics and other mechanics," Craighead said. "So the question is, can you make these reliably, uniformly and reproducibly?"

It was only a few years ago that scientists figured out how to make arrays of hundreds of thousands of graphene devices using a process called chemical vapor deposition. This involves growing the single-layer sheets of honeycomb-latticed carbon atoms on top of copper, then manipulating the graphene to make devices.

One of the Cornell researchers' devices is like a drum head -- a piece of graphene, one atom thick, suspended over a hollow well. Although growth of graphene by chemical vapor deposition on copper was invented elsewhere, Cornell researchers were the first to figure out how to make mechanical resonators from the large-area material.

"Four years ago we were able to make about one, and that took several months," Barton said. Speeding up the fabrication process has greatly increased graphene's potential in devices.

At Cornell, Barton and colleagues are working on making mass sensors out of graphene, which is atomically structured so it's sensitive to both mass and electric charge. What can result is that a bit of mass landing on a surface of suspended graphene will perturb the mechanical and electronic structure simultaneously, analogous to today's mass spectrometry but on a much smaller and more sensitive level, Barton explained.

The Cornell researchers are using optical interferometry to monitor the motion of a sheet of graphene. In this technique, the subtle device motions are read as variations in reflected light intensity, which are monitored by a fast photodiode connected to a spectrum analyzer. Another group at Cornell, led by McEuen, had earlier developed a way to "read out" carbon nanotubes, a technique that can also apply to graphene, Barton said.

The rapid progress of graphene makes its future very exciting, Craighead said.

"Graphene has gone from an oddity in a physics lab to something that can be practically incorporated into a variety of potential devices," he said. "The ability to fabricate things in these ways, to integrate them and to use them for different types of sensors, physical and chemical, is quite a step forward in a short time, and our group is one of the many that's contributed to this."

The authors' work is supported by the National Science Foundation.

####

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093


Cornell Chronicle:
Anne Ju
(607) 255-9735

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Graphene

Fullerex launches 2015 edition of the Bulk Graphene Pricing Report January 26th, 2015

News and information

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Chip Technology

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

New method to generate arbitrary optical pulses January 21st, 2015

New signal amplification process set to transform communications, imaging, computing: UC San Diego researchers discover a mechanism to amplify signals in optoelectronic systems that is far more efficient than standard processes January 21st, 2015

Sensors

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Discoveries

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Announcements

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE