Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Graphene poised to propel mechanical device technology forward

Craighead lab
A false-color microscopy image of a 30-by-30 micron square of graphene covering a square trench to form a nanomechanical resonator. These devices, which are the thinnest possible microelectromechanical systems and are useful for sensing and signal processing, can now be batch-fabricated as a result of recent advances in graphene fabrication technology.
Craighead lab

A false-color microscopy image of a 30-by-30 micron square of graphene covering a square trench to form a nanomechanical resonator. These devices, which are the thinnest possible microelectromechanical systems and are useful for sensing and signal processing, can now be batch-fabricated as a result of recent advances in graphene fabrication technology.

Abstract:
Graphene is sort of a scientific rock star, with countless groups studying its amazing electrical properties and tensile strength and dreaming up applications ranging from flat-panel screens to elevators in space.

Graphene poised to propel mechanical device technology forward

Ithaca, NY | Posted on November 9th, 2011

The single-layer carbon sheets' stellar qualities are only just being understood in all their capacities, say scientists at Cornell -- and researchers can dream big (or rather, very small) when it comes to everything graphene can offer.

That's what scientists in the lab of Harold Craighead, the Charles W. Lake Professor of Engineering, say in an American Vacuum Society online review article, Sept. 9, about graphene's present and future. The article made the cover of the printed journal and quickly became one of its most-downloaded pieces.

"It's becoming clear that with modern fabrication techniques, you can imagine turning graphene into a technology," said Robert A. Barton, graduate student and lead author. "People often focus on the electronic applications of graphene, and they don't really think as much of its mechanical applications."

It's precisely this area where Cornell has produced some pioneering work. In particular the Craighead group, in collaboration with others including Jiwoong Park, assistant professor of chemistry and chemical biology, and Paul McEuen, the Goldwin Smith Professor of Physics, has used graphene in nanoelectromechanical systems (NEMS), analogous to an earlier generation's microelectromechanical systems (MEMS).

"We've moved beyond working with little exfoliated flakes and more with grown materials that can be incorporated and connected with electronics and other mechanics," Craighead said. "So the question is, can you make these reliably, uniformly and reproducibly?"

It was only a few years ago that scientists figured out how to make arrays of hundreds of thousands of graphene devices using a process called chemical vapor deposition. This involves growing the single-layer sheets of honeycomb-latticed carbon atoms on top of copper, then manipulating the graphene to make devices.

One of the Cornell researchers' devices is like a drum head -- a piece of graphene, one atom thick, suspended over a hollow well. Although growth of graphene by chemical vapor deposition on copper was invented elsewhere, Cornell researchers were the first to figure out how to make mechanical resonators from the large-area material.

"Four years ago we were able to make about one, and that took several months," Barton said. Speeding up the fabrication process has greatly increased graphene's potential in devices.

At Cornell, Barton and colleagues are working on making mass sensors out of graphene, which is atomically structured so it's sensitive to both mass and electric charge. What can result is that a bit of mass landing on a surface of suspended graphene will perturb the mechanical and electronic structure simultaneously, analogous to today's mass spectrometry but on a much smaller and more sensitive level, Barton explained.

The Cornell researchers are using optical interferometry to monitor the motion of a sheet of graphene. In this technique, the subtle device motions are read as variations in reflected light intensity, which are monitored by a fast photodiode connected to a spectrum analyzer. Another group at Cornell, led by McEuen, had earlier developed a way to "read out" carbon nanotubes, a technique that can also apply to graphene, Barton said.

The rapid progress of graphene makes its future very exciting, Craighead said.

"Graphene has gone from an oddity in a physics lab to something that can be practically incorporated into a variety of potential devices," he said. "The ability to fabricate things in these ways, to integrate them and to use them for different types of sensors, physical and chemical, is quite a step forward in a short time, and our group is one of the many that's contributed to this."

The authors' work is supported by the National Science Foundation.

####

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093


Cornell Chronicle:
Anne Ju
(607) 255-9735

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

University of Tehran Researchers Invent Non-Enzyme Sensor to Detect Blood Sugar April 23rd, 2014

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Graphene

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Nanomaterial Outsmarts Ions April 22nd, 2014

Thinnest feasible membrane produced April 17th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

Atomic switcheroo explains origins of thin-film solar cell mystery April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Chip Technology

Harris & Harris Group Notes the Receipt of Proceeds From the Sale of Molecular Imprints' Semiconductor Business to Canon April 22nd, 2014

Progress made in developing nanoscale electronics: New research directs charges through single molecules April 21st, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

Sensors

University of Tehran Researchers Invent Non-Enzyme Sensor to Detect Blood Sugar April 23rd, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

Discoveries

University of Tehran Researchers Invent Non-Enzyme Sensor to Detect Blood Sugar April 23rd, 2014

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

Atomic switcheroo explains origins of thin-film solar cell mystery April 23rd, 2014

Characterizing inkjet inks: Malvern Instruments presents new rheological research April 23rd, 2014

Announcements

Characterizing inkjet inks: Malvern Instruments presents new rheological research April 23rd, 2014

NanoSafe, Inc. announces the addition of the Labconco Protector® Glove Box to its NanoSafe Tested™ registry April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE