Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanotechnology’s reach, from swords to solar cells

In a lecture last week, Murray Gibson, founding dean of the College of Science, examined the history of nanoscience — and what studying nature means for its future. Photo by Mary Knox Merrill.
In a lecture last week, Murray Gibson, founding dean of the College of Science, examined the history of nanoscience — and what studying nature means for its future. Photo by Mary Knox Merrill.

Abstract:
Nanotechnology may be an emerging field of study, but it's actually been around for a number of centuries, said Murray Gibson, founding dean of the College of Science at Northeastern University.

Nanotechnology’s reach, from swords to solar cells

Boston, MA | Posted on November 8th, 2011

To make swords, blacksmiths would bang away at iron in the presence of coal dust — thereby infusing tiny carbon particles into the iron to make the sword tips sharp. "They didn't know how it worked, but they were doing nanotechnology thousands of years ago," Gibson told more than 30 faculty and students in Frost Lounge last Tuesday for a lecture presented by PRISM, the Proactive Recruitment in Introductory Science and Mathematics.

PRISM is an initiative that connects Northeastern mathematicians, physicists and biologists with first- and second-year students who want to learn more about math and science research-related co-ops and internships. It was developed by members of Northeastern's math and science faculty and is supported by a five-year, $1.98 million grant from the National Science Foundation.

Nanoscience, Gibson said, is a highly interdisciplinary field best described as a convergence between the physical and life sciences. It revolves around the study of tiny objects. A nanometer, for example, is about the size of 10 atoms, or about how much a fingernail grows in a second.

Much of the science is explained in the arrangement and pattern of atoms on the nanoscale. This arrangement, Gibson explained, is what differentiates diamonds from graphite found in pencils. How atoms organize and bond with each other also determines the brilliant colors in ancient stained-glass windows.

Nanoscience even occurs in the kitchen. Earlier this semester, students in Northeastern's chapter of the American Chemical Society made ice cream using liquid nitrogen. When liquid nitrogen hits the cream and other ingredients, it immediately creates crystals, which Gibson said directly relates to how the ice cream tastes.

"It's a very expensive way to make ice cream, and only a chemist would think that way," he joked.

Nanotechnology, Gibson noted, may lead to a revolution in the way things are built — from lighter, stronger aircraft wings to cheap solar cells that can solve the world's energy problems. He said nanotechnology might be used in health care to help detect viruses and deliver drugs.

The answers, Gibson said, lie in studying how nature and evolution have already built things from the bottom up, and then translating that knowledge into interdisciplinary research, which he said can provide fertile ground for collaboration and discovery.

Northeastern researchers are already exploring the boundaries of nanotechnology through innovative work across numerous research centers and programs, such as the Nanoscale Science and Engineering Center for High-rate Nanomanufacturing, the Electronic Materials Research Institute, the Center for Translational Cancer Nanomedicine and the Integrative Graduate Education and Research Traineeship program in nanomedicine.

Gibson said it's critical for students interested in pursuing research to develop expertise in a particular discipline. This, he said, will provide a strong foundation for designing science experiments and position students to conduct interdisciplinary research, which he called a critical component in the future of nanotechnology.

"The great thing about science is you're always discovering like you did as a child," he said.

####

For more information, please click here

Contacts:
Greg St. Martin
617-373-5463

Copyright © Northeastern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Academic/Education

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Bar-Ilan University to set up quantum research center May 1st, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Nanomedicine

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Materials/Metamaterials

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Self-healing tech charges up performance for silicon-containing battery anodes May 15th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

CCNY physicists demonstrate photonic hypercrystals for control of light-matter interaction May 5th, 2017

Announcements

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Aerospace/Space

Space energy technology restored to make power stations more efficient: Scientists use graphene to reinvent abandoned heat energy converter technology March 7th, 2017

Applied Graphene Materials plc - Significant commercial progress in AGM’s three core sectors March 3rd, 2017

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Solar/Photovoltaic

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project