Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Iran Manufactures Deep Reactive Ion Etching Device

Abstract:
The researchers at Tose-e-Hesgar-Sazan-Asia Company managed to design and construct 'Deep Reactive Ion Etching Device' which is able to act as an environmentally-sustainable system by using H2 and O2 instead of a sort of polymer utilized in its foreign rivals.

Iran Manufactures Deep Reactive Ion Etching Device

Tehran, Iran | Posted on November 5th, 2011

Dr. Shamsoddin Mohajerzadeh, faculty member at Computer and Electrical Engineering Faculty, University of Tehran, stated that significant advances have been made in metals and ceramics machining mostly done by enhanced computer systems called CNC and CEO of the aforementioned company.

"Despite of many improvements achieved in this area, producing micro or nano structures are still beyond imagination and requires specific devices which are extremely expensive and lie within the sphere of high-tech. For this purpose, plasma cutting at very high precision is needed which could be materialized in combination with lithographic techniques," he added.

"Our device is a strictly precise deep vertical plasma etching machine by which it is possible to achieve structures of high aspect ratio through intelligent application of different gases like H2, O2, and SF6 which have high erosive capacity."

"Its similar counterpart which is owned by a German company is so complicated and is eight times more expensive than the domestic device in terms of used gases and other relevant costs," Mohajerzadeh noted.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Chip Technology

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Announcements

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Printing/Lithography/Inkjet/Inks/Bio-printing

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017

Nanocubes simplify printing and imaging in color and infrared: New technology allows multispectral reactions on a single chip December 15th, 2016

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project