Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UCSB physicists identify room temperature quantum bits in widely used semiconductor

David Awschalom

Credit: Rod Rolle
David Awschalom

Credit: Rod Rolle

Abstract:
A discovery by physicists at UC Santa Barbara may earn silicon carbide -- a semiconductor commonly used by the electronics industry -- a role at the center of a new generation of information technologies designed to exploit quantum physics for tasks such as ultrafast computing and nanoscale sensing.

UCSB physicists identify room temperature quantum bits in widely used semiconductor

Santa Barbara, CA | Posted on November 5th, 2011

The research team discovered that silicon carbide contains crystal imperfections that can be controlled at a quantum mechanical level. The finding is published this week in the journal Nature.

The research group of David Awschalom, senior author, made the finding. Awschalom is director of UCSB's Center for Spintronics & Quantum Computation, professor of physics, electrical and computer engineering, and the Peter J. Clarke Director of the California NanoSystems Institute.

In conventional semiconductor-based electronic devices, crystal defects are often deemed undesirable because of their tendency to immobilize electrons by "trapping" them at a particular crystal location. However, the UCSB team discovered that electrons that become trapped by certain imperfections in silicon carbide do so in a way that allows their quantum states to be initialized, precisely manipulated, and measured using a combination of light and microwave radiation. This means that each of these defects meets the requirements for use as a quantum bit, or "qubit," which is often described as the quantum mechanical analog of a transistor, since it is the basic unit of a quantum computer.

"We are looking for the beauty and utility in imperfection, rather than struggling to bring about perfect order," said Awschalom, "and to use these defects as the basis for a future quantum technology."

Most crystal imperfections do not possess these properties, which are intimately tied to the atomic structure of a defect and the electronic characteristics of its semiconductor host, explained Awschalom. In fact, before this research, the only system known to possess these same characteristics was a flaw in diamond known as the nitrogen-vacancy center.

The diamond nitrogen-vacancy center is renowned for its ability to function as a qubit at room temperature, while many other quantum states of matter require an extremely cold temperature, near absolute zero. However, this center exists in a material that is difficult to grow and challenging to manufacture into integrated circuits.

In contrast, high-quality crystals of silicon carbide, multiple inches in diameter, are commonly produced for commercial purposes. They can be readily fashioned into a multitude of intricate electronic, optoelectronic, and electromechanical devices. In addition, the defects studied by Awschalom and his group are addressed using infrared light that is close in energy to the light used widely throughout modern telecommunications networks. And while several distinct defect types were studied at a range of temperatures, two of them were capable of room temperature operation, just like the diamond nitrogen-vacancy center.

The combination of these features makes silicon carbide, with its defects, an attractive candidate for future work seeking to integrate quantum mechanical objects with sophisticated electronic and optical circuitry, according to the researchers. This research fits within a wider effort at UCSB to engineer quantum devices by fostering collaboration between the fields of materials science and quantum physics.

While defects in silicon carbide may offer many technologically attractive qualities, an immense number of defects in other semiconductors are still left to be explored.

"Our dream is to make quantum mechanics fully engineerable," said William Koehl, lead author and a graduate student in the Awschalom lab. "Much like a civil engineer is able to design a bridge based on factors such as load capacity and length span, we'd like to see a day when there are quantum engineers who can design a quantum electronic device based on specifications such as degree of quantum entanglement and quality of interaction with the surrounding environment."

####

For more information, please click here

Contacts:
Gail Gallessich

805-893-7220

Copyright © University of California - Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Chip Technology

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Quantum Computing

Doubling down on Schrödinger's cat May 27th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Theorists smooth the way to modeling quantum friction: New paradigm offers a strategy for solving one of quantum mechanics' oldest problems May 18th, 2016

Scientists take a major leap toward a 'perfect' quantum metamaterial: Berkeley Lab, UC Berkeley researchers lead study that uses trapped atoms in an artificial crystal of light May 13th, 2016

Discoveries

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Announcements

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Quantum nanoscience

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Theorists smooth the way to modeling quantum friction: New paradigm offers a strategy for solving one of quantum mechanics' oldest problems May 18th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic