Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UCLA Engineering researchers awarded $4.5M to develop stronger carbon nanotube materials

Abstract:
Researchers at the UCLA Henry Samueli School of Engineering and Applied Science have been awarded $4.5 million over four years by the U.S. Department of Defense to strengthen carbon nanotube yarns and sheets, materials that hold great promise for advancing satellite technology.

UCLA Engineering researchers awarded $4.5M to develop stronger carbon nanotube materials

Los Angeles, CA | Posted on November 2nd, 2011

Carbon nanotubes are molecular-sized tubes of carbon with remarkable properties. They are among the stiffest, strongest and most tenacious fibers known and also have properties valuable in areas like nanotechnology, electronics and optics. Tests have shown that the strongest single-wall carbon nanotubes are more than 500 times as strong as steel.

Since their discovery in 1993, carbon nanotubes have attracted great academic and industrial interest, but commercial applications have been slow to develop, primarily because of lingering technical problems that reduce the nanotubes' strength.

Now, a group of UCLA researchers led by Larry Carlson, head of UCLA's Easton Institute of Technology Advancement and director of new materials at UCLA Engineering, intends to correct various technical issues, potentially making the yarns and sheets 10 times stronger.

The group used seed money from a donation by James L. Easton, formerly of Easton Sports Inc., to generate early results at UCLA and to align its research with the government's need for strong, multi-functional materials in space.

Co-principal investigators on the project include Robert Hicks, a UCLA professor of chemical and biomolecular engineering, and Suneel Kodambaka, a UCLA assistant professor of materials science and engineering. Three outside companies will also be partners on the project: Nanocomp Inc., Surfx Inc. and Materia Inc.

Carbon nanotube materials are sought after for various structural applications because they are so strong and yet so light. Reducing just a single pound in a satellite can save up to $75,000 in fuel, additional structures needed to carry the satellite's mass and its fuel mass, and other costs. The nanotube-based materials have the added benefit that they can conduct heat and provide electrical shielding better than the materials they replace. This can reduce a satellite's mass even further, since other support systems can be reduced or omitted altogether.

So why hasn't this been done?

When combined into a composite, carbon nanotubes degrade to about 1 percent of their original measured strength. Furthermore, when yarns are spun out of carbon nanotube fibers, the yarn becomes less than 20 percent as dense as theory would dictate. Lastly, the fibers are currently held together by relatively weak forces, which tend to slide and pull out under tension, causing the yarn to pull apart.

The researchers plan to use atmospheric pressure plasma to carefully open up individual carbon bonds without compromising the overall strength of the nanotubes. They will also attach special organic molecules that can join to carbon bonds on one side and resin on the other.

"Instead of hitting the nanotubes with a sledge hammer," said Hicks, who will oversee plasma and surface modification, "we can go in there with a finely tuned surgical knife and create the exact functionalization we need to achieve a high degree of cross-linking without any loss of structural integrity."

The team will also use a special resin consisting of tiny sub-nanometer rings that can fit between all the nanotubes instead of simply draping long molecules on the surface. The resin has a viscosity similar to that of water, so it flows easily. The resin will provide control over the reaction, creating a super-tough, cured resin inside the structure.

In addition, the team will bond certain types of atoms with the carbon nanotubes to reinforce how the fibers are held together.

"Our approach is simple, scalable and can potentially improve not only the mechanical strength but also the toughness of the carbon nanotube yarns," said Kodambaka, an expert in materials synthesis and processing.

"Here is a case where a sporting goods investment, enhanced with government support, could add to the nation's satellite technology, giving lighter launch loads and tougher space structures," Carlson said. "While this might seem backwards, with volume production and lower costs, it would be gratifying to bring it all back to sports."

The Institute for Technology Advancement (ITA), established February 2008, adds value to UCLA Engineering by capturing and managing research programs and accelerating transition to startup companies. The Easton Institute for Technology Advancement, established a year later with a grant from James L. Easton, develops new materials for sporting goods and aerospace applications.

####

About UCLA
The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs and has an enrollment of almost 5,000 students. The school's distinguished faculty are leading research to address many of the critical challenges of the 21st century, including renewable energy, clean water, health care, wireless sensing and networking, and cybersecurity. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to seven multimillion-dollar interdisciplinary research centers in wireless sensor systems, nanoelectronics, nanomedicine, renewable energy, customized computing, and the smart grid, all funded by federal and private agencies.
(www.engineer.ucla.edu | www.twitter.com/uclaengineering)

For more information, please click here

Contacts:
Wileen Wong Kromhout,
(310) 206-0540

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizard® AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

'Exceptional' research points way toward quantum discoveries: Rice University scientists make tunable light-matter couplings in nanotube films April 30th, 2018

Materials/Metamaterials

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Nickel ferrite promotes capacity and cycle stability of lithium-sulfur battery June 13th, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Announcements

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizard® AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Executives Explore Key Megatrends and Innovations in MEMS, Sensors, Imaging Tech at SEMI-MSIG European Summits: Speakers to share developments in smart automotive, smart cities, smart industrial, biomedical, consumer and IoT, September 19-21, 2018 in Grenoble, France June 19th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Military

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Rare element to provide better material for high-speed electronics May 30th, 2018

Aerospace/Space

Disability Can Be a Superpower in Space Disabled astronauts offer unique solutions to emergencies in space May 17th, 2018

SpaceX Founding Employee Tom Mueller to Speak at International Space Development Conference May 15th, 2018

Shrimp, Soybeans, and Tomatoes Top the Menu in Cities in Space May 10th, 2018

National Space Society Applauds NASA's Support for Commercial Low Earth Orbit Space Stations May 2nd, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

SUNY Poly Professor Eric Lifshin Selected for ‘Fellow of the Microanalysis Society’ Position for Significant Contributions to Microanalysis June 13th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project