Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UCLA Engineering researchers awarded $4.5M to develop stronger carbon nanotube materials

Abstract:
Researchers at the UCLA Henry Samueli School of Engineering and Applied Science have been awarded $4.5 million over four years by the U.S. Department of Defense to strengthen carbon nanotube yarns and sheets, materials that hold great promise for advancing satellite technology.

UCLA Engineering researchers awarded $4.5M to develop stronger carbon nanotube materials

Los Angeles, CA | Posted on November 2nd, 2011

Carbon nanotubes are molecular-sized tubes of carbon with remarkable properties. They are among the stiffest, strongest and most tenacious fibers known and also have properties valuable in areas like nanotechnology, electronics and optics. Tests have shown that the strongest single-wall carbon nanotubes are more than 500 times as strong as steel.

Since their discovery in 1993, carbon nanotubes have attracted great academic and industrial interest, but commercial applications have been slow to develop, primarily because of lingering technical problems that reduce the nanotubes' strength.

Now, a group of UCLA researchers led by Larry Carlson, head of UCLA's Easton Institute of Technology Advancement and director of new materials at UCLA Engineering, intends to correct various technical issues, potentially making the yarns and sheets 10 times stronger.

The group used seed money from a donation by James L. Easton, formerly of Easton Sports Inc., to generate early results at UCLA and to align its research with the government's need for strong, multi-functional materials in space.

Co-principal investigators on the project include Robert Hicks, a UCLA professor of chemical and biomolecular engineering, and Suneel Kodambaka, a UCLA assistant professor of materials science and engineering. Three outside companies will also be partners on the project: Nanocomp Inc., Surfx Inc. and Materia Inc.

Carbon nanotube materials are sought after for various structural applications because they are so strong and yet so light. Reducing just a single pound in a satellite can save up to $75,000 in fuel, additional structures needed to carry the satellite's mass and its fuel mass, and other costs. The nanotube-based materials have the added benefit that they can conduct heat and provide electrical shielding better than the materials they replace. This can reduce a satellite's mass even further, since other support systems can be reduced or omitted altogether.

So why hasn't this been done?

When combined into a composite, carbon nanotubes degrade to about 1 percent of their original measured strength. Furthermore, when yarns are spun out of carbon nanotube fibers, the yarn becomes less than 20 percent as dense as theory would dictate. Lastly, the fibers are currently held together by relatively weak forces, which tend to slide and pull out under tension, causing the yarn to pull apart.

The researchers plan to use atmospheric pressure plasma to carefully open up individual carbon bonds without compromising the overall strength of the nanotubes. They will also attach special organic molecules that can join to carbon bonds on one side and resin on the other.

"Instead of hitting the nanotubes with a sledge hammer," said Hicks, who will oversee plasma and surface modification, "we can go in there with a finely tuned surgical knife and create the exact functionalization we need to achieve a high degree of cross-linking without any loss of structural integrity."

The team will also use a special resin consisting of tiny sub-nanometer rings that can fit between all the nanotubes instead of simply draping long molecules on the surface. The resin has a viscosity similar to that of water, so it flows easily. The resin will provide control over the reaction, creating a super-tough, cured resin inside the structure.

In addition, the team will bond certain types of atoms with the carbon nanotubes to reinforce how the fibers are held together.

"Our approach is simple, scalable and can potentially improve not only the mechanical strength but also the toughness of the carbon nanotube yarns," said Kodambaka, an expert in materials synthesis and processing.

"Here is a case where a sporting goods investment, enhanced with government support, could add to the nation's satellite technology, giving lighter launch loads and tougher space structures," Carlson said. "While this might seem backwards, with volume production and lower costs, it would be gratifying to bring it all back to sports."

The Institute for Technology Advancement (ITA), established February 2008, adds value to UCLA Engineering by capturing and managing research programs and accelerating transition to startup companies. The Easton Institute for Technology Advancement, established a year later with a grant from James L. Easton, develops new materials for sporting goods and aerospace applications.

####

About UCLA
The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs and has an enrollment of almost 5,000 students. The school's distinguished faculty are leading research to address many of the critical challenges of the 21st century, including renewable energy, clean water, health care, wireless sensing and networking, and cybersecurity. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to seven multimillion-dollar interdisciplinary research centers in wireless sensor systems, nanoelectronics, nanomedicine, renewable energy, customized computing, and the smart grid, all funded by federal and private agencies.
(www.engineer.ucla.edu | www.twitter.com/uclaengineering)

For more information, please click here

Contacts:
Wileen Wong Kromhout,
(310) 206-0540

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

Nanotubes/Buckyballs

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes - Planar light source using a phosphor screen with highly crystalline single-walled carbon nanotubes (SWCNTs) as field emitters demonstrates its potential for energy-efficient lighting device October 14th, 2014

Materials/Metamaterials

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Announcements

Nanoparticle technology triples the production of biogas October 23rd, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Military

NanoTechnology for Defense (NT4D) October 22nd, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Aerospace/Space

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Electrically conductive plastics promising for batteries, solar cells October 10th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

QD Vision Wins Prestigious Presidential Green Chemistry Challenge Award from the U.S. Environmental Protection Agency October 16th, 2014

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes - Planar light source using a phosphor screen with highly crystalline single-walled carbon nanotubes (SWCNTs) as field emitters demonstrates its potential for energy-efficient lighting device October 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE