Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > UCLA Engineering researchers awarded $4.5M to develop stronger carbon nanotube materials

Abstract:
Researchers at the UCLA Henry Samueli School of Engineering and Applied Science have been awarded $4.5 million over four years by the U.S. Department of Defense to strengthen carbon nanotube yarns and sheets, materials that hold great promise for advancing satellite technology.

UCLA Engineering researchers awarded $4.5M to develop stronger carbon nanotube materials

Los Angeles, CA | Posted on November 2nd, 2011

Carbon nanotubes are molecular-sized tubes of carbon with remarkable properties. They are among the stiffest, strongest and most tenacious fibers known and also have properties valuable in areas like nanotechnology, electronics and optics. Tests have shown that the strongest single-wall carbon nanotubes are more than 500 times as strong as steel.

Since their discovery in 1993, carbon nanotubes have attracted great academic and industrial interest, but commercial applications have been slow to develop, primarily because of lingering technical problems that reduce the nanotubes' strength.

Now, a group of UCLA researchers led by Larry Carlson, head of UCLA's Easton Institute of Technology Advancement and director of new materials at UCLA Engineering, intends to correct various technical issues, potentially making the yarns and sheets 10 times stronger.

The group used seed money from a donation by James L. Easton, formerly of Easton Sports Inc., to generate early results at UCLA and to align its research with the government's need for strong, multi-functional materials in space.

Co-principal investigators on the project include Robert Hicks, a UCLA professor of chemical and biomolecular engineering, and Suneel Kodambaka, a UCLA assistant professor of materials science and engineering. Three outside companies will also be partners on the project: Nanocomp Inc., Surfx Inc. and Materia Inc.

Carbon nanotube materials are sought after for various structural applications because they are so strong and yet so light. Reducing just a single pound in a satellite can save up to $75,000 in fuel, additional structures needed to carry the satellite's mass and its fuel mass, and other costs. The nanotube-based materials have the added benefit that they can conduct heat and provide electrical shielding better than the materials they replace. This can reduce a satellite's mass even further, since other support systems can be reduced or omitted altogether.

So why hasn't this been done?

When combined into a composite, carbon nanotubes degrade to about 1 percent of their original measured strength. Furthermore, when yarns are spun out of carbon nanotube fibers, the yarn becomes less than 20 percent as dense as theory would dictate. Lastly, the fibers are currently held together by relatively weak forces, which tend to slide and pull out under tension, causing the yarn to pull apart.

The researchers plan to use atmospheric pressure plasma to carefully open up individual carbon bonds without compromising the overall strength of the nanotubes. They will also attach special organic molecules that can join to carbon bonds on one side and resin on the other.

"Instead of hitting the nanotubes with a sledge hammer," said Hicks, who will oversee plasma and surface modification, "we can go in there with a finely tuned surgical knife and create the exact functionalization we need to achieve a high degree of cross-linking without any loss of structural integrity."

The team will also use a special resin consisting of tiny sub-nanometer rings that can fit between all the nanotubes instead of simply draping long molecules on the surface. The resin has a viscosity similar to that of water, so it flows easily. The resin will provide control over the reaction, creating a super-tough, cured resin inside the structure.

In addition, the team will bond certain types of atoms with the carbon nanotubes to reinforce how the fibers are held together.

"Our approach is simple, scalable and can potentially improve not only the mechanical strength but also the toughness of the carbon nanotube yarns," said Kodambaka, an expert in materials synthesis and processing.

"Here is a case where a sporting goods investment, enhanced with government support, could add to the nation's satellite technology, giving lighter launch loads and tougher space structures," Carlson said. "While this might seem backwards, with volume production and lower costs, it would be gratifying to bring it all back to sports."

The Institute for Technology Advancement (ITA), established February 2008, adds value to UCLA Engineering by capturing and managing research programs and accelerating transition to startup companies. The Easton Institute for Technology Advancement, established a year later with a grant from James L. Easton, develops new materials for sporting goods and aerospace applications.

####

About UCLA
The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs and has an enrollment of almost 5,000 students. The school's distinguished faculty are leading research to address many of the critical challenges of the 21st century, including renewable energy, clean water, health care, wireless sensing and networking, and cybersecurity. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to seven multimillion-dollar interdisciplinary research centers in wireless sensor systems, nanoelectronics, nanomedicine, renewable energy, customized computing, and the smart grid, all funded by federal and private agencies.
(www.engineer.ucla.edu | www.twitter.com/uclaengineering)

For more information, please click here

Contacts:
Wileen Wong Kromhout,
(310) 206-0540

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Research Reveals Exotic Quantum States in Double-Layer Graphene: Findings shed new light on the nature of electron interactions in quantum systems and establish a potential new platform for future quantum computers June 26th, 2019

Researchers unveil how soft materials react to deformation at molecular level June 24th, 2019

Nanometrics and Rudolph Announce Merger Agreement to Create a Premier Semiconductor Process Control Company June 24th, 2019

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) June 22nd, 2019

Govt.-Legislation/Regulation/Funding/Policy

Research Reveals Exotic Quantum States in Double-Layer Graphene: Findings shed new light on the nature of electron interactions in quantum systems and establish a potential new platform for future quantum computers June 26th, 2019

Researchers unveil how soft materials react to deformation at molecular level June 24th, 2019

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Ice lithography: opportunities and challenges in 3D nanofabrication June 21st, 2019

Nanotubes/Buckyballs/Fullerenes/Nanorods

Making graphene-based desalination membranes less prone to defects, better at separating June 13th, 2019

Shaking hands with human or robot? Nanotubes make them alike as never before June 6th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Self-powered wearable tech May 8th, 2019

Materials/Metamaterials

Researchers unveil how soft materials react to deformation at molecular level June 24th, 2019

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Electron-behaving nanoparticles rock current understanding of matter: Discovery will lead to new methods for materials design June 20th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Announcements

Research Reveals Exotic Quantum States in Double-Layer Graphene: Findings shed new light on the nature of electron interactions in quantum systems and establish a potential new platform for future quantum computers June 26th, 2019

Researchers unveil how soft materials react to deformation at molecular level June 24th, 2019

Nanometrics and Rudolph Announce Merger Agreement to Create a Premier Semiconductor Process Control Company June 24th, 2019

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) June 22nd, 2019

Military

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

Dashing the dream of ideal 'invisibility' cloaks for stress waves June 7th, 2019

Flexible generators turn movement into energy: Rice University's laser-induced graphene nanogenerators could power future wearables June 2nd, 2019

Aerospace/Space

Better microring sensors for optical applications May 10th, 2019

Sculpting Super-Fast Light Pulses: NIST Nanopillars Shape Light Precisely for Practical Applications May 3rd, 2019

New hybrid energy method could fuel the future of rockets, spacecraft for exploration: Nontraditional route shown to increase performance, burn rate April 9th, 2019

VP Pence Announces Humans on Moon by 2024 April 2nd, 2019

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Research Reveals Exotic Quantum States in Double-Layer Graphene: Findings shed new light on the nature of electron interactions in quantum systems and establish a potential new platform for future quantum computers June 26th, 2019

'Nanoemulsion' gels offer new way to deliver drugs through the skin: Novel materials made with FDA-approved components could deliver large payloads of active ingredients June 21st, 2019

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Ice lithography: opportunities and challenges in 3D nanofabrication June 21st, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project