Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > The quest for the tiny carbon nanotube

Tom Flores
Tom Flores

Abstract:
As he tailors one of the world's finest imaging instruments to tackle one of science's most baffling challenges, Tom Flores feels like he's playing a microscopic game of Where's Waldo.

The quest for the tiny carbon nanotube

Bethlehem, PA | Posted on November 1st, 2011

Flores, a junior majoring in physics, is on a quest for something more elusive—the tiny carbon nanotube.

Carbon nanotubes measure 1 to 5 nanometers in diameter. One nanometer is a billionth of a meter, or between one ten-thousandth and one hundred-thousandth the thickness of a human hair.

With unmatched strength, stiffness and hardness, and length-to-diameter ratios of as much as millions to one, CNTs have potential in medicine, energy and many other applications.

But their infinitesimal size makes it difficult to find and observe CNTs. While Waldo hides behind people, CNTs conceal themselves among bumps, nicks, specks of dust and other imperfections on a microscope slide. They reveal their presence by emitting infrared light when a light source is directed at them.

An ultrathin plane of focus

Flores began studying CNTs last spring with Slava Rotkin, associate professor of physics, and continued last summer in the physics department's Research Experience for Undergraduates program. Funded by the National Science Foundation, the program enables students to do a 10-week paid internship alongside a faculty member.

Lehigh's REU program, with more than two decades of NSF funding, is one of the nation's oldest. In the past five years, an average of 25 to 28 students, roughly one-third from Lehigh, have taken part in the internship.

Flores and two graduate students—Massooma Pirbhai and Tetyana Ignatova—study CNTs with a custom-made NTEGRA-Spectra recently acquired by Rotkin and Richard Vinci, professor of materials science and engineering. The instrument pairs an optical microscope with an atomic-force microscope (AFM), whose needle-like probe scans a surface and records its topographical features.

Flores and his colleagues combine AFM with an optical imaging technique called total internal reflection fluorescence.

"TIRF is a form of photoluminescence," says Flores. "You excite an object so that it gives off light, which provides information about the object and its properties.

"TIRF can excite an object in an extremely thin plane. We study single-walled CNTs, which are 1 nm in diameter. Our plane of focus has to be very thin; if not, we get luminescence from impurities near our sample."

A unique integration of microscopy techniques

Flores uses the AFM probe tip to locate the position of CNTs on a sample.

"We produce an AFM topographical image that shows us where we need to focus. The resolution of that image is limited only by the diameter of the tip. This is much better than you can do with an optics probe.

"Our project is like a game of Where's Waldo. We're trying to find a tiny object in a giant sample. We have to combine information from the AFM about physical characteristics—shape and size—with information supplied by TIRF about how light interacts with the sample."

Only one other research group in the U.S., says Flores, integrates AFM and TIRF in a setup exactly the same as Lehigh's. Combining the two techniques requires resourcefulness. To achieve optimum focus and illumination, Flores and his colleagues have had to modify the sample stage and lenses of the optical microscope.

"Our overall goal is to find and examine CNTs and characterize their properties so that engineers can find applications for them.

"We don't have images of CNTs yet, but we have produced images of polyethylene beads with dyes that emit light at various wavelengths.

"So we know our system is working."

####

For more information, please click here

Contacts:
Kurt Pfitzer

Copyright © Lehigh University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Imaging

Industry’s First Dedicated Cryo-DualBeam System Automates Preparation of Frozen, Biological Samples: New Thermo Scientific Aquilos FIB/SEM protects sample integrity and enhances productivity for cryo-electron tomography workflow August 8th, 2017

Thermo Fisher Scientific Advances Cryo-EM Leadership to Drive Structural Biology Discoveries: New Thermo Scientific Krios G3i raises bar for performance, automation and time-to-results Breakthrough Thermo Scientific Glacios provides a cryo-EM entry path for a broader range of res August 8th, 2017

New Quattro Field Emission ESEM Emphasizes Versatility and Ease of Use: Thermo Scientific Quattro ESEM allows materials science researchers to study nanoscale structure in almost any material under a range of environmental conditions August 8th, 2017

Thermo Fisher Scientific’s New Talos F200i S/TEM Delivers Flexible, High-Performance Imaging: New compact S/TEM can be configured to meet specific imaging and analytical requirements for materials characterization in research laboratories August 8th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Discoveries

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Announcements

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Tools

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

FRITSCH • Milling and Sizing! Innovations at POWTECH 2017 - Hall 2 • Stand 227 August 9th, 2017

New Quattro Field Emission ESEM Emphasizes Versatility and Ease of Use: Thermo Scientific Quattro ESEM allows materials science researchers to study nanoscale structure in almost any material under a range of environmental conditions August 8th, 2017

Thermo Fisher Scientific’s New Talos F200i S/TEM Delivers Flexible, High-Performance Imaging: New compact S/TEM can be configured to meet specific imaging and analytical requirements for materials characterization in research laboratories August 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project