Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > ‘Fertility chip’ determines concentration and motility of semen

Abstract:
Loes Segerink, a researcher at UT's MESA+ Institute for Nanotechnology, has developed a "fertility chip" that can accurately count sperm and measure their motility. The chip can be inserted into a compact device for one-off use. A future home test kit will make it possible for men to test their sperm in a familiar environment. As a result, there is a greater chance of obtaining a correct diagnosis, also the method is simple and inexpensive. Segerink's doctoral defence will take place on 4 November 2011.

‘Fertility chip’ determines concentration and motility of semen

Enschede, The Netherlands | Posted on October 29th, 2011

Concentration and motility

The lab-on-a-chip developed by Segerink measures sperm concentration: the fertility standard states that a millilitre of ejaculate should contain at least 20 million sperm. A second important aspect of fertility is motility. This too can be measured using the lab-on-a-chip. Simple home test kits are already commercially available. These indicate whether the concentration is "above or below the standard value". These tests are too limited, however, as they do not give accurate concentration readings.

To swim or not to swim

Finally, sperm movement (motility) is another important measure of quality. A small adjustment of the lab-on-a-chip is all that is needed to sort motile sperm from non-motile sperm, after which both can be counted separately. By measuring sperm motility in this way, the chip offers a truly complete test.
How does it work

On the chip, sperm flow through a liquid-filled channel, beneath electrode "bridges". When a cell passes beneath one of these electrodes, there is a brief fluctuation in the electrical resistance. These events are counted. To test the reliability of her concentration measurements, Segerink added microspheres (tiny balls) to the liquid. Would the system only count sperm, or would it also register other particles? She found that the method was selective enough to distinguish sperm from microspheres. The system was also able to reliably distinguish white blood cells from other bodies. In addition to being an indicator of sperm quality, the white cell count provides important additional information to gynaecologists.

Partners

Segerink developed the "fertility chip" in the BIOS Lab-on-a-Chip research group of Prof. Albert van den Berg, in collaboration with the Twente Medical Spectrum. The research group is part of the MESA+ Institute for Nanotechnology of the University of Twente. Various companies (PigGenetics, Blue4Green, R&R Mechatronics, Menzis, and Lionix) also participated in this project, which was funded by the STW Technology Foundation in The Netherlands.

In 2011, Segerink received a Valorisation Grant, as a first step towards establishing a company. This will provide her with a platform for refining the fertility chip and its accompanying read-out device into a market-ready product.

####

For more information, please click here

Contacts:
Wiebe van der Veen
+31 (0)53 4894244

Copyright © University of Twente

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Lab-on-a-chip

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

New graphene-based system could help us see electrical signaling in heart and nerve cells: Berkeley-Stanford team creates a system to visualize faint electric fields December 19th, 2016

WPI researchers build liquid biopsy chip that detects metastatic cancer cells in blood December 15th, 2016

Chip Technology

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

Nanomedicine

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

Block copolymer micellization as a protection strategy for DNA origami March 17th, 2017

Discoveries

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Announcements

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Research partnerships

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project