Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > ‘Fertility chip’ determines concentration and motility of semen

Abstract:
Loes Segerink, a researcher at UT's MESA+ Institute for Nanotechnology, has developed a "fertility chip" that can accurately count sperm and measure their motility. The chip can be inserted into a compact device for one-off use. A future home test kit will make it possible for men to test their sperm in a familiar environment. As a result, there is a greater chance of obtaining a correct diagnosis, also the method is simple and inexpensive. Segerink's doctoral defence will take place on 4 November 2011.

‘Fertility chip’ determines concentration and motility of semen

Enschede, The Netherlands | Posted on October 29th, 2011

Concentration and motility

The lab-on-a-chip developed by Segerink measures sperm concentration: the fertility standard states that a millilitre of ejaculate should contain at least 20 million sperm. A second important aspect of fertility is motility. This too can be measured using the lab-on-a-chip. Simple home test kits are already commercially available. These indicate whether the concentration is "above or below the standard value". These tests are too limited, however, as they do not give accurate concentration readings.

To swim or not to swim

Finally, sperm movement (motility) is another important measure of quality. A small adjustment of the lab-on-a-chip is all that is needed to sort motile sperm from non-motile sperm, after which both can be counted separately. By measuring sperm motility in this way, the chip offers a truly complete test.
How does it work

On the chip, sperm flow through a liquid-filled channel, beneath electrode "bridges". When a cell passes beneath one of these electrodes, there is a brief fluctuation in the electrical resistance. These events are counted. To test the reliability of her concentration measurements, Segerink added microspheres (tiny balls) to the liquid. Would the system only count sperm, or would it also register other particles? She found that the method was selective enough to distinguish sperm from microspheres. The system was also able to reliably distinguish white blood cells from other bodies. In addition to being an indicator of sperm quality, the white cell count provides important additional information to gynaecologists.

Partners

Segerink developed the "fertility chip" in the BIOS Lab-on-a-Chip research group of Prof. Albert van den Berg, in collaboration with the Twente Medical Spectrum. The research group is part of the MESA+ Institute for Nanotechnology of the University of Twente. Various companies (PigGenetics, Blue4Green, R&R Mechatronics, Menzis, and Lionix) also participated in this project, which was funded by the STW Technology Foundation in The Netherlands.

In 2011, Segerink received a Valorisation Grant, as a first step towards establishing a company. This will provide her with a platform for refining the fertility chip and its accompanying read-out device into a market-ready product.

####

For more information, please click here

Contacts:
Wiebe van der Veen
+31 (0)53 4894244

Copyright © University of Twente

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Lab-on-a-chip

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

New graphene-based system could help us see electrical signaling in heart and nerve cells: Berkeley-Stanford team creates a system to visualize faint electric fields December 19th, 2016

Chip Technology

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Liquid crystal molecules form nano rings: Quantized self-assembly enables design of materials with novel properties February 7th, 2018

Nanometrics Selected for Fab-Wide Process Control Metrology by Domestic China 3D-NAND Manufacturer: Latest Fab Win Includes Comprehensive Suite for Substrate, Thin Film and Critical Dimension Metrology February 7th, 2018

Nanomedicine

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Discoveries

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Announcements

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Research partnerships

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Vanadium dioxyde: A revolutionary material for tomorrow's electronics: Phase-chance switch can now be performed at higher temperatures February 5th, 2018

Nanowire LED Innovator Aledia Announces €30 ($36M) Million Series-C Financing: Intel Capital Joins Existing Investors to Commercialize Certain Nanowire-LED Technologies for Mobile Displays January 29th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project