Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Drexel-Led Team Joins Collaborative Effort to Advance Semiconductor Technology

Abstract:
A team of scientists and engineers led by Drexel materials science and engineering professor Dr. Jonathan Spanier and collaborators Dr. Andrew Rappe of the University of Pennsylvania and Dr. Lane Martin, Dr. Nadya Mason, and Dr. Moonsub Shim the University of Illinois at Urbana-Champaign ( UIUC ) joins a group of research teams nationwide in striving to revolutionize the tiny electronic components that keep the world's technology moving at ever-increasing speeds.

Drexel-Led Team Joins Collaborative Effort to Advance Semiconductor Technology

Philadelphia, PA | Posted on October 29th, 2011

The Semiconductor Research Corporation in conjunction with the National Science Foundation, has awarded $20 million to a dozen groups of researchers that will examine the use of new materials, devices and architecture to revolutionize the sustainability, efficiency and production of semiconductors.

"The cooperation and support of industry in this effort through the Nanoelectronics Research Initiative of the Semiconductor Research Corporation also brings a significant perspective to the grantees' research with opportunities for mentoring of their students," said Dr. Lawrence Goldberg, senior engineering advisor at the National Science Foundation.

The team of Spanier, chemist Rappe and physicist Mason, and materials scientists Martin and Shim of UIUC will share $1.8 million of the NSF/SRC funds to focus on new materials essential in realizing the new nanoelectronic devices.

According to Spanier, Drexel's part of this collaboration, which is called the Meta-Capacitance and Spatially Periodic Electronic Excitation Devices ( MC-SPEEDs ), will focus on investigating and developing new ways of encoding information using interactions among electrons in a semiconductor that are controlled by the presence and properties of new materials.

"We anticipate that the outcomes of this research have the potential to change how we use and interface with computers and other devices in our daily lives. With our collaborators at Penn and the UIUC we seek to build on the history of innovation in the birth of modern computing at these institutions."

The Drexel/Penn/UIUC team joins 11 other interdisciplinary teams led by researchers at Columbia, Cornell, MIT, Notre Dame, the University of California at Riverside, the University of California at Santa Barbara, the University of Pittsburgh, and Virginia Commonwealth in an initiative called Nanoelectronics for 2020 and Beyond ( NEB ). The vision of NEB is that collaborative research combined with industry partnership will accelerate the discovery and development of new materials, methods and systems for producing nanoelectronics.

"The search for a new semiconductor device that will provide the U.S. with a leadership position in the global era of nanoelectronics relies on making discoveries at these kinds of advanced universities," said Jeff Welser, director of the Nanoelectronics Research Initiative ( NRI ) for SRC. "These schools have the talent and capabilities needed to produce critical research that helps to raise both our national competitiveness and economic progress."

This team-driven approach allows each group of researchers to contribute in their areas of specialty in hopes of making unified discoveries that reshape the field of nanoelectronics, while also generating data and technology that can be used in the nanoelectronics industry.

"The best thing about the team is that it brings together expertise from a number of different fields - computational materials science, synthesis of materials, oxides, carbon-based systems, advanced transport studies, optical characterization and much more," Lane, the team's representative from the University of Illinois-Urbana said. "It means that our students and researchers are exposed to new ways of thinking about materials, devices and approaches to science. In my opinion, that is one of the most important, but often overlooked, features of such a team. I learn something new and impactful every time I interact with professors Spanier, Rappe, Mason and Shim."

Another important aspect of the four-year grant is the partnership it creates between research and industry via the NSF and SRC. Regular meetings between team leaders and representatives from the SRC, an industry and university consortium that will participate in ensuring the technological relevance of the translational research developed by the NEB member teams, with an ultimate goal of commercial product.

"Modern science and engineering research benefit greatly from interactions with industry, because they formulate the problems that they see as blocking innovative products that can benefit society," Rappe, who is a collaborator from the University of Pennsylvania. "Industry/academia dialog accelerates our progress toward practical innovative solutions."

####

For more information, please click here

Contacts:
News Media Contact
Britt Faulstick
News Officer
University Communications

Phone: 215-895-2617
Mobile: 215-796-5161

Copyright © Drexel

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Chip Technology

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Nanoelectronics

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

New type of graphene-based transistor will increase the clock speed of processors: Scientists have developed a new type of graphene-based transistor and using modeling they have demonstrated that it has ultralow power consumption compared with other similar transistor devices May 19th, 2016

Self-healing, flexible electronic material restores functions after many breaks May 17th, 2016

Announcements

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Research partnerships

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic