Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NIST Measures Key Property of Potential 'Spintronic' Material

Manganite oxide lattices (purple) doped with lanthanum (magenta) and strontium (green) have potential for use in spintronic memory devices, but their usual disorderly arrangement (left) makes it difficult to explore their properties. The ANL/NIST team's use of a novel orderly lattice (right) allowed them to measure some of the material's fundamental characteristics.
Credit: Argonne National Laboratory
Manganite oxide lattices (purple) doped with lanthanum (magenta) and strontium (green) have potential for use in spintronic memory devices, but their usual disorderly arrangement (left) makes it difficult to explore their properties. The ANL/NIST team's use of a novel orderly lattice (right) allowed them to measure some of the material's fundamental characteristics.

Credit: Argonne National Laboratory

Abstract:
An advanced material that could help bring about next-generation "spintronic" computers has revealed one of its fundamental secrets to a team of scientists from Argonne National Laboratory (ANL) and the National Institute of Standards and Technology (NIST).

NIST Measures Key Property of Potential 'Spintronic' Material

Gaithersburg, MD | Posted on October 27th, 2011

The material, constructed of two different compounds, might one day allow computers to use the magnetic spin of electrons, in addition to their charge, for computation. A host of innovations could result, including fast memory devices that use considerably less power than conventional systems and still retain data when the power is off. The team's effort not only demonstrates that the custom-made material's properties can be engineered precisely, but in creating a virtually perfect sample of the material, the team also has revealed a fundamental characteristic of devices that can be made from it.

Team members from ANL began by doing something that had never been done before—engineering a highly ordered version of a magnetic oxide compound that naturally has two randomly distributed elements: lanthanum and strontium. Stronger magnetic properties are found in those places in the lattice where extra lanthanum atoms are added. Precise placement of the strontium and lanthanum within the lattice can enable understanding of what is needed to harness the interaction of the magnetic forces among the layers for memory storage applications, but such control has been elusive up to this point.

"These oxides are physically messy to work with, and until very recently, it was not possible to control the local atomic structure so precisely," says Brian Kirby, a physicist at the NIST Center for Neutron Research (NCNR). "Doing so gives us access to important fundamental properties, which are critical to understand if you really want to make optimal use of a material."

The team members from ANL have mastered a technique for laying down the oxides one atomic layer at a time, allowing them to construct an exceptionally organized lattice in which each layer contains only strontium or lanthanum, so that the interface between the two components could be studied. The NIST team members then used the NCNR's polarized neutron reflectometer to analyze how the magnetic properties within this oxide lattice changed as a consequence of the near-perfect placement of atoms.

They found that the influence of electrons near the additional lanthanum layers was spread out across three magnetic layers in either direction, but fell off sharply further away than that. Tiffany Santos, lead scientist on the study from ANL, says that the measurement will be important for the emerging field of oxide spintronics, as it reveals a fundamental size unit for electronic and magnetic effects in memory devices made from the material.

"For electrons to share spin information—something required in a memory system—they will need to be physically close enough to influence each other," Kirby says. "By ordering this material in such a precise way, we were able to see just how big that range of influence is."

* T. S. Santos, B. J. Kirby, S. Kumar, S. J. May, J. A. Borchers, B. B. Maranville, J. Zarestky, S. G. E. te Velthuis, J. van den Brink and A. Bhattacharya. Delta doping of ferromagnetism in antiferromagnetic manganite superlattices. Physical Review Letters, Week ending Oct. 14, 2011, 107, 167202 (2011), DOI: 10.1103/PhysRevLett.107.167202.

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Chad Boutin
301-975-4261

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Laboratories

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Spintronics

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

Electron highway inside crystal December 12th, 2016

Chip Technology

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

Discoveries

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Announcements

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Research partnerships

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project