Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NIST Measures Key Property of Potential 'Spintronic' Material

Manganite oxide lattices (purple) doped with lanthanum (magenta) and strontium (green) have potential for use in spintronic memory devices, but their usual disorderly arrangement (left) makes it difficult to explore their properties. The ANL/NIST team's use of a novel orderly lattice (right) allowed them to measure some of the material's fundamental characteristics.
Credit: Argonne National Laboratory
Manganite oxide lattices (purple) doped with lanthanum (magenta) and strontium (green) have potential for use in spintronic memory devices, but their usual disorderly arrangement (left) makes it difficult to explore their properties. The ANL/NIST team's use of a novel orderly lattice (right) allowed them to measure some of the material's fundamental characteristics.

Credit: Argonne National Laboratory

Abstract:
An advanced material that could help bring about next-generation "spintronic" computers has revealed one of its fundamental secrets to a team of scientists from Argonne National Laboratory (ANL) and the National Institute of Standards and Technology (NIST).

NIST Measures Key Property of Potential 'Spintronic' Material

Gaithersburg, MD | Posted on October 27th, 2011

The material, constructed of two different compounds, might one day allow computers to use the magnetic spin of electrons, in addition to their charge, for computation. A host of innovations could result, including fast memory devices that use considerably less power than conventional systems and still retain data when the power is off. The team's effort not only demonstrates that the custom-made material's properties can be engineered precisely, but in creating a virtually perfect sample of the material, the team also has revealed a fundamental characteristic of devices that can be made from it.

Team members from ANL began by doing something that had never been done before—engineering a highly ordered version of a magnetic oxide compound that naturally has two randomly distributed elements: lanthanum and strontium. Stronger magnetic properties are found in those places in the lattice where extra lanthanum atoms are added. Precise placement of the strontium and lanthanum within the lattice can enable understanding of what is needed to harness the interaction of the magnetic forces among the layers for memory storage applications, but such control has been elusive up to this point.

"These oxides are physically messy to work with, and until very recently, it was not possible to control the local atomic structure so precisely," says Brian Kirby, a physicist at the NIST Center for Neutron Research (NCNR). "Doing so gives us access to important fundamental properties, which are critical to understand if you really want to make optimal use of a material."

The team members from ANL have mastered a technique for laying down the oxides one atomic layer at a time, allowing them to construct an exceptionally organized lattice in which each layer contains only strontium or lanthanum, so that the interface between the two components could be studied. The NIST team members then used the NCNR's polarized neutron reflectometer to analyze how the magnetic properties within this oxide lattice changed as a consequence of the near-perfect placement of atoms.

They found that the influence of electrons near the additional lanthanum layers was spread out across three magnetic layers in either direction, but fell off sharply further away than that. Tiffany Santos, lead scientist on the study from ANL, says that the measurement will be important for the emerging field of oxide spintronics, as it reveals a fundamental size unit for electronic and magnetic effects in memory devices made from the material.

"For electrons to share spin information—something required in a memory system—they will need to be physically close enough to influence each other," Kirby says. "By ordering this material in such a precise way, we were able to see just how big that range of influence is."

* T. S. Santos, B. J. Kirby, S. Kumar, S. J. May, J. A. Borchers, B. B. Maranville, J. Zarestky, S. G. E. te Velthuis, J. van den Brink and A. Bhattacharya. Delta doping of ferromagnetism in antiferromagnetic manganite superlattices. Physical Review Letters, Week ending Oct. 14, 2011, 107, 167202 (2011), DOI: 10.1103/PhysRevLett.107.167202.

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Chad Boutin
301-975-4261

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Laboratories

Working under pressure: Diamond micro-anvils with huge pressures will create new materials October 19th, 2016

Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge October 15th, 2016

Scientists Find Static "Stripes" of Electrical Charge in Copper-Oxide Superconductor: Fixed arrangement of charges coexists with material's ability to conduct electricity without resistance October 14th, 2016

Tomoyasu Mani Wins 2016 Blavatnik Regional Award for Young Scientists: Award recognizes his work at Brookhaven Lab to understand the physical processes occurring in organic materials used to harness solar energy October 13th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Spintronics

Making spintronic neurons sing in unison November 18th, 2016

Scientists find technique to improve carbon superlattices for quantum electronic devices: In a paradigm shift from conventional electronic devices, exploiting the quantum properties of superlattices holds the promise of developing new technologies October 20th, 2016

A new spin on superconductivity: Harvard physicists pass spin information through a superconductor October 16th, 2016

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

Chip Technology

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

Discoveries

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Announcements

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Research partnerships

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project