Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > NIST Measures Key Property of Potential 'Spintronic' Material

Manganite oxide lattices (purple) doped with lanthanum (magenta) and strontium (green) have potential for use in spintronic memory devices, but their usual disorderly arrangement (left) makes it difficult to explore their properties. The ANL/NIST team's use of a novel orderly lattice (right) allowed them to measure some of the material's fundamental characteristics.
Credit: Argonne National Laboratory
Manganite oxide lattices (purple) doped with lanthanum (magenta) and strontium (green) have potential for use in spintronic memory devices, but their usual disorderly arrangement (left) makes it difficult to explore their properties. The ANL/NIST team's use of a novel orderly lattice (right) allowed them to measure some of the material's fundamental characteristics.

Credit: Argonne National Laboratory

Abstract:
An advanced material that could help bring about next-generation "spintronic" computers has revealed one of its fundamental secrets to a team of scientists from Argonne National Laboratory (ANL) and the National Institute of Standards and Technology (NIST).

NIST Measures Key Property of Potential 'Spintronic' Material

Gaithersburg, MD | Posted on October 27th, 2011

The material, constructed of two different compounds, might one day allow computers to use the magnetic spin of electrons, in addition to their charge, for computation. A host of innovations could result, including fast memory devices that use considerably less power than conventional systems and still retain data when the power is off. The team's effort not only demonstrates that the custom-made material's properties can be engineered precisely, but in creating a virtually perfect sample of the material, the team also has revealed a fundamental characteristic of devices that can be made from it.

Team members from ANL began by doing something that had never been done before—engineering a highly ordered version of a magnetic oxide compound that naturally has two randomly distributed elements: lanthanum and strontium. Stronger magnetic properties are found in those places in the lattice where extra lanthanum atoms are added. Precise placement of the strontium and lanthanum within the lattice can enable understanding of what is needed to harness the interaction of the magnetic forces among the layers for memory storage applications, but such control has been elusive up to this point.

"These oxides are physically messy to work with, and until very recently, it was not possible to control the local atomic structure so precisely," says Brian Kirby, a physicist at the NIST Center for Neutron Research (NCNR). "Doing so gives us access to important fundamental properties, which are critical to understand if you really want to make optimal use of a material."

The team members from ANL have mastered a technique for laying down the oxides one atomic layer at a time, allowing them to construct an exceptionally organized lattice in which each layer contains only strontium or lanthanum, so that the interface between the two components could be studied. The NIST team members then used the NCNR's polarized neutron reflectometer to analyze how the magnetic properties within this oxide lattice changed as a consequence of the near-perfect placement of atoms.

They found that the influence of electrons near the additional lanthanum layers was spread out across three magnetic layers in either direction, but fell off sharply further away than that. Tiffany Santos, lead scientist on the study from ANL, says that the measurement will be important for the emerging field of oxide spintronics, as it reveals a fundamental size unit for electronic and magnetic effects in memory devices made from the material.

"For electrons to share spin information—something required in a memory system—they will need to be physically close enough to influence each other," Kirby says. "By ordering this material in such a precise way, we were able to see just how big that range of influence is."

* T. S. Santos, B. J. Kirby, S. Kumar, S. J. May, J. A. Borchers, B. B. Maranville, J. Zarestky, S. G. E. te Velthuis, J. van den Brink and A. Bhattacharya. Delta doping of ferromagnetism in antiferromagnetic manganite superlattices. Physical Review Letters, Week ending Oct. 14, 2011, 107, 167202 (2011), DOI: 10.1103/PhysRevLett.107.167202.

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Chad Boutin
301-975-4261

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Laboratories

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Scientists uncover origin of high-temperature superconductivity in copper-oxide compound: Analysis of thousands of samples reveals that the compound becomes superconducting at an unusually high temperature because local electron pairs form a 'superfluid' that flows without resist August 19th, 2016

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Spintronics

Swapping substrates improves edges of graphene nanoribbons: Using inert boron nitride instead of silica creates precise zigzag edges in monolayer graphene August 2nd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

A mini-antenna for the data processing of tomorrow: Nature Nanotechnology: Short-wavelength spin waves generated directly for the first time July 20th, 2016

A new spin on reality July 15th, 2016

Chip Technology

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Announcements

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Stretchy supercapacitors power wearable electronics August 25th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Research partnerships

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic