Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > RUSNANO to Invest in Basalt Plastics Production

Diagram of Galenís pultrusion unit
Diagram of Galenís pultrusion unit

Abstract:
RUSNANO and Galen company have signed an investment agreement for establishing production of composite nanostructured polymer based on basalt fiber. The project has a total budget of 500 million rubles of which RUSNANO will co-invest 200 million rubles. Project planners expect production to reach 2,500 tons to 3,000 tons in 2016. Products include shaft lining for the mining industry; armature, flexible connectors, and rawl plugs for the construction industry; composite alluvial drill rods for oil production; and poles for street lighting and power transmission lines.

RUSNANO to Invest in Basalt Plastics Production

Moscow, Russia | Posted on October 27th, 2011

Basalt plastic armature is as strong as steel and a great deal more durable. Moreover, composite material based on basalt fiber does not corrode. This is very important for structures that must operate where moisture is high or salt is present, particularly bridge supports. The material is considerably lighter than steel (on average 70 percent), simplifying transportation and making it less costly. Under some circumstances, the material extends the service life of equipment by reducing the stress load, for example, in alluvial drill rods used to produce oil. Because the composite is shock absorbent and impact safe, the material is ideally suited to street lighting poles.

"Galen is experienced in developing unique technological solutions. Take, for example its armature for construction of a single-span bridge in Northern Ireland or its flexible connectors for the Passive House in England, an innovative project. By the way, the strict requirement the British had for fire resistance of materials prompted the company's engineers to begin experiments with nanomodifiers for polymer connectors," noted RUSNANO Managing Director Alexander Kondrashov.

The composite materials that Galen manufactures contain basalt fiber produced using pultrusion, a continuous molding process, with an epoxy binder that is resistant to halogens, acids, and alkalis. The disadvantage of the composite's relatively low combustion temperature has been overcome by adding to the epoxy binder a small amount of nanoparticles of aluminosilicate montmorillonite based largely on clay. This also improves the strength of the composite under flexion.



Technical information

Pultrusion is a production technology for manufacturing construction industry items using plastic fibers in a continuous process. The name pultrusion comes from the English words pull and extrusion. Saturated with polymer binding material, the filler (rope, linen, woven tape, fiberglass, carbon fiber, or organic fiber) is stretched through a heated die that determines its form. The polymer binder is usually made of epoxy resin, unsaturated polyesters, or thermoplastics. Galen uses epoxy resins to which nanoparticles of aluminosilicate montmorillonite have been added for chemical stability, resistance to heat, and impact and fatigue endurance.

This particular method for preparing composite materials has superior compatibility with the environment: СО2 emissions during production of a single run of basalt plastic are one thirty-fifth to one forty-ninth the СО2 emitted during production of regular steel or stainless steel armature. Measured by energy consumption, a kilogram of the composite armature requires only two kilowatts to produce while a kilogram of the steel armature consumes three times the energy.

####

About RUSNANO
RUSNANO was founded in March 2011 as an open joint stock company through reorganization of state corporation Russian Corporation of Nanotechnologies. RUSNANOís mission is to develop the Russian nanotechnology industry through co-investment in nanotechnology projects with substantial economic potential or social benefit. The Government of the Russian Federation owns 100 percent of the shares in RUSNANO. Anatoly Chubais is CEO and chairman of the Executive Board of RUSNANO.

Work to establish nanotechnology infrastructure and training for nanotechnology specialists, formerly conducted by the Russian Corporation of Nanotechnologies, has been entrusted to the Fund for Infrastructure and Educational Programs, a non-commercial fund also established through reorganization of the Russian Corporation of Nanotechnologies.

For more information, please click here

Contacts:
10A Prospekt 60-letia Oktyabrya
Moscow, Russia
117036
P: +7 495 988 5388
F: +7 495 988 5399

Copyright © RUSNANO

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

VC/Funding/Angel financing/Loans/Leases/Crowdfunding

Harris & Harris Group Issues Reminder for Shareholder Update Call on January 10, 2017 January 10th, 2017

Harris & Harris Group Announces a Proposed Strategic Restructuring December 20th, 2016

Harris & Harris Group Issues Letter to Shareholders and Information for Shareholder Call on Tuesday, November 15, 2016 November 14th, 2016

Harris & Harris Group Issues Business Update and Reports Financial Statements as of September 30, 2016 November 9th, 2016

Materials/Metamaterials

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Announcements

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Construction

Rice U probes ways to turn cement's weakness to strength: Rice University lab's calculations show new mechanisms to induce strength, ductility into concrete January 6th, 2017

Diamond nanothread: Versatile new material could prove priceless for manufacturing: Would you dress in diamond nanothreads? It's not as far-fetched as you might think November 3rd, 2016

DryWired's Liquid Nanotint to be the first nano-insulation in a Federal building: 250,000 federal buildings, most with uninsulated glass October 12th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project